
Indoor Localization of Mobile
Devices Based on Wi-Fi Signals

Using Raytracing Supported
Algorithms.

Diploma Thesis

Dirk Rothe

RWTH Aachen University, Germany

Chair for Communication and Distributed Systems

Advisors:

Dipl.-Inform. Nicolai Viol
Prof. Dr.-Ing. Klaus Wehrle

Prof. Dr. Leif Kobbelt

Registration date: 2011-08-22
Submission date: 2012-02-22

I hereby affirm that I composed this work independently and used no other than the
specified sources and tools and that I marked all quotes as such.

Hiermit versichere ich, dass ich die Arbeit selbstständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich gemacht
habe.

Aachen, den 22. Februar 2012

Abstract

This thesis focuses on the localization problem adapted to the constraints of a
raytracer simulated signal distribution for Wi-Fi capable mobile devices in indoor

scenarios. The localization problem is defined as predicting the most probable
locations for an observed sequence of Wi-Fi signal strength readings. An accurately

performing solution is of high interest because Wi-Fi signals can be observed
cheaply due to an already widespread deployment of Access Points. For an efficient
analysis of the problem, a framework is implemented that combines the raytracing,

the localization and evaluation components. Based on this framework, it is
investigated whether the raytracing tool provides an effective basis for an accurate

Wi-Fi localization system. Furthermore, the performance of a Hidden Markov
Model, a Particle Filter and a Nearest Neighbour based localization approach are
evaluated on automatically trained raytracer models. Therefore, a representative
corpus of location annotated signal measurements is assembled and subsequently
employed for a thorough investigation of the algorithm properties with respect to

tracking the device in scenes of various complexity. The trained Wi-Fi signal
strength predictions diverge in average by 4dBm from the real measurements.

Under these predictions, the tracking algorithms reach a localization accuracy of
about 1.5m on pathways and degrades up to 4m in complex scenes like stairways.

Acknowledgments

I wish to thank my supervisor Nicolai Viol and Prof. Dr. Wehrle for the opportunity
to work on the fascinating subject of this thesis. Without their guidance, their
support and especially the challenging and constructive discussions, the thesis would
not have been completed with a satisfying result.

Beside my supervisor, I want to thank my team at semantics for allowing me to
dedicate my time fully onto the presented topic. Without their efforts, this thesis
would not have been possible.

I’m also grateful for all the help of my friends: Mirjam, Kadir, Albert, and Chrissi
to proofread the text and dig out all the invisible inconsistencies.

Last, but not least, I must thank my wife Christine for her support and endless
patience during the last six months.

Contents

1 Introduction 1

1.1 Radio Propagation . 2

1.2 Localization Algorithms . 3

1.3 Framework and Implementation . 4

1.4 Evaluation . 5

1.5 Outline . 6

2 Background 7

2.1 Radio Propagation Model . 7

2.1.1 PHOTON Raytracer . 10

2.1.2 Optimization with Genetic Algorithms 12

2.1.3 Error . 13

2.2 Positioning . 13

2.2.1 Techniques . 14

2.3 Tracking . 16

2.3.1 Mobility Models . 16

2.3.2 Error . 18

2.4 Bayesian Pattern Recognition . 18

2.5 Hidden Markov Models . 21

2.5.1 Decision Rule . 23

2.5.2 Viterbi Algorithm . 23

2.5.3 Higher Order Models . 25

2.5.4 Logspace . 25

2.5.5 Pruning . 27

2.5.6 Training . 28

2.6 Continuous Models . 28

2.6.1 Linear Dynamic System . 28

2.6.2 Particle Filter . 29

2.7 Least Mean Squared Error . 30

2.8 Summary . 31

3 Related Work 33

3.1 Radio Propagation . 33

3.1.1 2D-Raytracer Models . 34

3.1.2 3D-Raytracer Models . 35

3.2 Positioning and Tracking . 37

3.2.1 Hidden Markov Models . 37

3.2.2 Particle Filters . 39

3.2.3 Nearest Neighboor based Approaches 41

3.3 Summary . 42

4 Design 43

4.1 General Overview . 43

4.2 Radio Propagation . 44

4.2.1 Model . 45

4.2.2 Parameter Estimation . 45

4.2.2.1 Initialization . 46

4.2.2.2 Optimization . 46

4.2.3 Device Specific Adaptation . 47

4.3 Positioning and Tracking . 48

4.3.1 Hidden Markov Model . 49

4.3.1.1 Parameter Estimation 50

4.3.1.2 Emission Probabilities 50

4.3.1.3 Transition Probabilities 51

4.3.1.4 Pruning . 53

4.3.1.5 Result Sequence . 55

4.3.2 Particle Filter . 55

4.3.2.1 Emission Probabilities 55

4.3.2.2 Transition Probabilities 55

4.3.2.3 Sample Impoverishment 56

4.3.2.4 Result Sequence . 57

4.4 Devices . 57

4.5 Fat Client . 57

4.6 Evaluation . 59

4.7 Summary . 60

5 Implementation 63

5.1 Third Party Libraries . 64

5.2 Modules . 67

5.2.1 Server . 68

5.2.2 Localization Algorithms . 70

5.2.3 Fat Client . 72

5.3 Summary . 73

6 Evaluation 75

6.1 Radio Propagation Model . 76

6.1.1 Scene and Setup . 76

6.1.1.1 3D-Model and Materials 76

6.1.1.2 Accesspoints . 77

6.1.1.3 Devices . 78

6.1.1.4 Training Corpus . 79

6.1.2 Training of free Parameters 80

6.1.2.1 Granularity of the 3D geometry 81

6.1.2.2 Multiple Devices . 82

6.2 Localization . 82

6.2.1 Scene and Setup . 82

6.2.2 Synthetic Measurements . 84

6.2.3 Real World Measurements . 87

6.2.3.1 Device Adaptation 88

6.2.3.2 Multiple Devices . 89

6.2.3.3 Granularity of the 3D geometry 91

6.3 Summary . 92

7 Conclusion 95

7.1 Future Work . 96

Bibliography 99

A Appendix 103

A.1 List of Abbreviations . 103

A.2 Localization Paths . 104

A.3 Synthetic Localization Error Tables 108

A.4 2D Localization Result . 111

A.5 Optimization Process . 111

1
Introduction

The problem of determining the location of a person or an object is an ancient one.
Many different methods were employed over the recent centuries. For example, the
navigation of ships has been supported by referencing to the celestial map of stars,
lighthouses or even by transportable devices known as sextants. More recently,
tracking the location of vehicles is primarily done with the support of satellite based
systems. The first deployed of these systems is the well known GPS system. From
air planes over ships to cars, nearly every modern vehicle today is able to determine
its position with an accuracy down to a few meters. But the need for localization
solutions is not just confined to vehicles of transportation services. For example,
due to the now ubiquitous availability of powerful mobile computing devices, the
realization of personalized context- and location-aware applications has become an
active field of research. But the natural habitats of human individuals, the indoor
environments, are dark zones for the signals of the GPS satellites.

The lack of a comparable efficient indoor localization method motivates the research
activities into alternative localization systems that are specifically adapted to these
environments. Therefore, indoor localization solutions have been based on various
information sources that reflect the constraints of the different use-cases. Whereas a
hypothesized domestic robot can be specifically designed to carry multiple sensors as
optical cameras, ultra-sound or infra-red devices, this degree of freedom is not given
for the localization of human beings. There, the sensors need also to be unobtrusive
which can be ensured by sensing signals of communication networks.

This thesis will focus on the signals of IEEE 802.11 wireless networks as the pri-
mary source of information to approach the localization problem. The important
advantage of Wi-Fi, in contrast to other technologies, is the inexpensive hardware
and the already dense deployment of Wi-Fi Access Points (APs) in urban areas. For
example, at the RWTH Aachen University it is most likely to be in range of at least 5
APs across the campus side 1. Widespread interest into these signal-strength based

1Although it has to be noted, that RWTH is an university with a strong technical background,
and thus probably a site with a high saturation of APs. But by interpolating the history it can
also be expected that the density of deployed Wi-Fi infrastructure still increases.

2 1. Introduction

localization solutions has been induced by the RADAR [2] system developed at Mi-
crosoft Research at the year 2000. The system uses the received signals strengths
of a number of APs and an analytical model for the impact of an obstacle on the
signal strength to determine the position of a mobile device with respect to a 2D
floor map. From the structure of the RADAR system can be concluded that the
problem formulation has two major aspects:
What is the distribution of the signal strengths and how is this information processed
algorithmically?

1.1 Radio Propagation

The first aspect relates to the nature of the Wi-Fi signals and rises the following
questions. How are the signals distributed in the localization space? How are they
propagated from the AP source? These questions lead to the concept of radio prop-
agation models. These models can be specified at different levels of complexity but
they have in common, that they allow a prediction of the Wi-Fi signal distribution
over the targeted areas. This prediction can then be used to drive the decision
process that leads to a localization result.

Consequently, the generation of an accurate radio propagation model was the first
focus of this thesis. The primary source for the investigated propagation model is
the so called PHOTON raytracer [23] that was developed recently by Arne Schmitz
at the chair of I8 of the RWTH. The performance of the GPU-driven raytracer,
with respect to radio signal propagation, was in the first place examined for urban
outdoor environments, but it is designed for the general application to arbitrary
indoor and outdoor environments. A basic evaluation of the model capabilities for
an indoor scenario was conducted in an earlier work by Schmitz [24].

In order to simulate the propagation of the AP emitted radio signals accurately, the
raytracer has to be configured with parameters that relate to the physical properties
of the involved entities. The first entity is the AP that is basically configured to
be an isotropic radio sender with a scalar antenna gain. The other simulation rele-
vant entities compose the structure of the building and can basically be understood
as material annotated scene geometry. Thus, the scene geometry is a mandatory
prerequisite for the raytracer and the material parameters have to be determined
independently.

The target indoor scenario for the evaluation of this thesis is the UMIC office building
with four levels and a size of 15m × 60m × 9m. The 3D geometry of the building
was modelled by using the software Blender2. 10 different types of materials were
defined and accordingly attached to the mesh model. Further details on the model
properties and the materials are described more formally in the evaluation chapter
6.1.1.

The parameters of the materials, specifically the coefficients controlling the rate of
absorption and reflection of the given building are assumed to be unknown in order to
perform the raytracing simulation. To acquire these parameters, a training technique
based on evolutionary concepts, more precisely Genetic Algorithms, is devised and

2The open source toolkit Blender is freely available at http://www.blender.org/.

h

1.2. Localization Algorithms 3

implemented to distribute the computational demanding search for the unknown
parameters over an array of GPU-nodes. The procedure has been determined to
yield adequate material parameters for the simulation of the signal distribution over
the 2 · 106 voxel3 resolution of the 8100m2 volume for UMIC scene.

1.2 Localization Algorithms

The second topic of the thesis deploys these radio propagation models for the design,
implementation and analysis of different localization algorithms. The algorithms ex-
ploit the information provided by the propagation models and the available knowl-
edge about the nature of the environment. For example, information about the
structure of the building is already available in the form of the scene geometry used
for the PHOTON raytracer. From this geometry, for example the knowledge about
unreachable zones in the location space can be derived. The algorithms were chosen
by studying the related literature to this topic and by applying prior knowledge
of Bayesian pattern recognition principles to this field of research. The first of the
three analysed algorithms is a nearest neighbour based technique, named Least Mean
Squared Error (LMSE), that was also used by the mentioned RADAR system. The
second is based on Hidden Markov Models (HMM) and the third one uses a Particle
Filter (PF) based approach.

All three techniques can be inferred from the Bayesian decision theory but only the
HMM and the PF are conceptually related. The primary difference between the
LMSE and the HMM/PF is rooted in its model assumptions that ignore the sequen-
tial nature of the tracking problem. With respect to the scope of this thesis, the
tracking problem is defined as follows: Given a sequence of RSSI readings the optimal
sequence of locations has to be found. It is reasonable to assume that adjacent RSSI
readings are related due to constraints imposed by the physical world. Or spoken
in the terms of probability theory: Temporal adjacent readings are not statistically
independent. The HMM and PF based approaches presented in this thesis make
explicit use of these dependencies, whereas the LMSE does not and thereby retains
a simple structure 4.

The HMM and PF technique exploit the additional information contained in the time
driven sequentiality of the tracking problem. Both model the concept of movement
from one location to another in successive steps. In terms of probability theory: They
assume a conditional probability for moving to the location s under the condition
to come from location s′ which should be denoted as p(s|s′) 5. Furthermore, both
make use of the radio propagation model to relate an RSSI measurement vector to a
location in space. This can be understood as the conditional probability to receive
the RSSI vector x at the location s. This probability is denoted as p(x|s). And
finally, they combine these two probabilities iteratively for all measurements of the
observed sequence to predict the most probable sequence of positions. So where are
the differences, why care for both?

3A 3D pixel, a discretized volume of space.
4The simplicity of the LMSE makes it a valuable tool to evaluate the quality of radio propagation

models with regard to the localization problem.
5A location is understood to represent an abstract state from the search space of possible

locations, therefore it is denoted as s instead of l.

4 1. Introduction

In the HMM case, the locations are assumed to be discrete and enumerable. There-
fore, the possible combinations of these locations, the probable solutions to the
tracking problem, are enumerable, too. Since these are a huge number of possi-
ble location sequences, the HMM model has to make assumptions that restrict the
search space to a tractable size. Only depending on the quality of the assumptions
the algorithm predicts the most probable location sequence of all possible solutions.

The PF makes use of a continuous location space thus avoiding the error induced
by the coarseness of an eventual discretization of the space. Instead of searching for
solutions by enumerating the search space, the algorithm generates solutions that
are elements of an infinite solution space. Whereas the HMM uses the mentioned
conditional probabilities to assign probabilities (or scores) to all candidate sequences,
the PF generates a subset of all solutions by simulating the progress of the modelled
stochastic process by sampling from the conditionals. Due to this properties, the
PF technique is a member of the Markov chain Monte Carlo methods.

1.3 Framework and Implementation

For the realization of this thesis, a localization framework was designed and imple-
mented to solve the identified problems. The framework handles the training and
simulation of the radio propagation models and uses the results as a foundation for
the application of the localization algorithms. The final results of the localization
algorithms are then either used to predict the current location with the track history,
during the online stage, or are later processed for an offline evaluation.

The system is driven by a central Server process that communicates with the pro-
ducers and consumers of the different data streams over HTTP service interfaces.
A prominent producer is given by the mobile devices that push their collected RSSI
readings for processing at the Server process, and subsequently consume the results
during online tracking. Another producer/consumer is the implemented Fat Client
used for visualizing and debugging the localization system with an OpenGL based
data analysis toolkit which is especially suited for the 3D nature of the simulated
environment. The third component, that is interfaced with the Server over HTTP,
are the GPU-nodes that are employed for training the free parameters of the radio
propagation models.

The mobile devices and the GPU-Nodes are the simplest of these four primary com-
ponents, as they are only responsible for high-level I/O. The device with sensors→
HTTP and the GPU-Node with HTTP → processor → HTTP . Each of the two
components consist therefore only of around 100 lines of code. On the contrary, the
Server is the most complex component and it depends on a number of subsystems
that are responsible for the different tasks of the localization problem. The most
relevant subsystems are the Simulator, the Optimizer and the Localizer which are
therefore briefly described.

The Simulator is responsible for the organization of the simulation of radio propa-
gation models. It responds to requests for propagation models by dispatching the
configuration of the model parameters in a job enclosure to the available GPU-Nodes
and returns a job specific result. Many thousands of these requests are queued by

1.4. Evaluation 5

the Optimizer during the training of the model parameters. The Optimizer imple-
ments the genetic algorithm approach to the optimization problem. The resulting
optimized propagation models are employed by the Localizer component which uses
the stored RSSI values as the primary information source for solving the localization
problem. Under the assumptions of this thesis, the localization problem is given
by sequence of RSSI readings arriving from the mobile device. These readings are
subsequently processed by the Localizer through the application of a localization
algorithm. Three different algorithms are available, the HMM, the PF and LMSE
implementation.

The implementation of the framework is based on the Python programming lan-
guage. Since Python is very popular in the research communities it has a wealth of
third-party libraries that are suited to support the scientific topic of this thesis. The
core implementation of the localization algorithms is written in a dialect of Python
called Cython [3]. This was necessary due to the slow6 Python runtime with respect
to needs of number crunching algorithms. Cython is a Python-to-C compiler, which
enables the prototyping of algorithms in native Python followed by a transformation
into an efficient C representation. The transformation is supported by providing
type annotations and using dedicated data structures in the form of NumPy arrays.
These multi-dimensional NumPy array types provide the basis data structures for
the radio propagation models and the localization algorithms.

These design decisions have lead to a flexible framework that can be easily extended
if needed. For example, switching from the PHOTON raytracer to another sim-
ulator for radio propagation can be accomplished by simply adapting the current
PHOTON-specific driver script and ensuring a similar 3D voxel representation of
the simulated signal strengths. Furthermore, using the Python/Cython/NumPy
stack has lead to fast and memory efficient localization algorithms which has made
the evaluation of the system convenient.

1.4 Evaluation

The last part of this thesis is dedicated to the evaluation of the designed, imple-
mented and now presented localization framework. After a thorough description of
the conditions under which the experiments of the evaluation were conducted, the
first steps of the evaluation will investigate the quality of the PHOTON generated
radio propagation models.

It will be analysed whether the proposed training process with genetic algorithms
leads to propagation models that can adapt to multiple device classes. The other
objective of this part of the evaluation is given by the question how much granularity
on the 3D geometry level is needed for the PHOTON raytracer to produce propaga-
tion models that represent a good estimate of the unknown true signal distribution.
For these tasks that relate to search for the unknown material parameters as training
corpus is needed for the optimization algorithm. Such a corpus was collected for 4
different devices with RSSI readings from 100 locations of the UMIC building.

6Actually, Python is quite fast for most of the common use-cases in software engineering. There-
fore, the ratio of Python/Cython code over the implementation of the framework is about 10:1.

6 1. Introduction

After evaluating aspects relating to the nature of the propagation models, the other
major part of the evaluation will focus on the performance of the localization al-
gorithms. The three described algorithms, the HMM, the PF and the LMSE, will
use the resulting propagation models from the first part of the evaluation to solve
the localization problem on an evaluation corpus consisting of sequences of location
annotated RSSI readings.

These sequences represent measurements from eight differently defined paths of var-
ious complexity. For example, the most demanding one with respect to the localiza-
tion problem is a path upward through the stairways over three levels of the building.
For each of two different Android devices, an Iconia tablet and a Nexus smartphone,
160 sample paths were taken. This leads to an evaluated distance of about 8000m
during the real world evaluation.

But before analysing the results on these real world measurements, a synthetic set of
measurements with 320 samples over the eight paths will be employed under different
noise conditions. This idealized environment will help to evaluate the differences
between the HMM, the PF and the LMSE with respect to their algorithmic nature.

Afterwards the evaluation will be finalized by using results of the radio propagation
evaluation and the experience from the synthetic evaluation for interpreting the
observations that are made in the real world evaluation. It will be seen, that the
promising results from the synthetic evaluation are not directly mappable to the
localization in natural environments.

Furthermore, the localization algorithms are employed on the results of the radio
propagation evaluation that relate to the granularity of the 3D geometry. It will be
seen, how complex the scene needs to be modelled to derive a propagation model
from the PHOTON raytracer that leads to acceptable localization error rates. In
the last part of the evaluation, it will additionally be investigated how well the
framework generalizes over more than one device. A propagation model that has
only seen measurements from one device will be evaluated on the other. The results
of this experiment seem promising.

1.5 Outline

The structure of this thesis is given as follows: After this introduction, the concepts
used in the framework and needed for understanding the localization algorithms
are explained in the background chapter 2 which is followed by the related work
chapter 3. In chapter 3, comparable approaches to the localization problem found
in the literature will be investigated. By building on the foundations lain in the
background chapter, the design chapter 4 is structured. There, all major components
of the framework and their interactions are described comprehensively. An overview
of the implementation is given in chapter 5 which is finally followed by the thorough
evaluation of the system presented in chapter 6. In the last chapter 7 conclusions
will be drawn and an outlook into further research activities will be given.

2
Background

In this chapter the background to the two main topics of this thesis is presented.
These are radio propagation models and localization algorithms. A radio propa-
gation model is used to compute the propagation of Wi-Fi signals and lays the
foundation for the localization methods developed in this thesis. Therefore, the
challenges of radio propagation will be discussed in general and different technolo-
gies to compute the signal propagation of Wi-Fi terminals are presented. Thereby,
the raytracing technology is discussed in more detail because it is able to compute
most accurate propagations and is therefore used for the further work of this the-
sis. Furthermore, a technique for automatic training of the material parameters,
thereby enabling the generalization to unknown scenes, will be provided. The tech-
nique of choice is optimization with Genetic Algorithms. Finally, the two main error
measures for evaluating the quality of the model are defined.

The chapter continues by introducing the two different variants of the localization
problem: Positioning and Tracking. Furthermore, the possible sources of informa-
tion, that can be exploited by a localization algorithm, are described. A focus was
placed on the signal strength information given by RSSI values that are receiv-
able with Wi-Fi capable devices. For the tracking problem, additional information
sources are presented in the form of mobility models. For both sub-problems, the
corresponding error measures will be defined.

After describing the basic ideas of simple positioning approaches in 2.2.1, this chapter
will end with a detailed presentation of more sophisticated models. These are the
Hidden Markov Model and the Particle Filter, as both of them are more suited to
the tracking problem and have therefore been evaluated in this thesis.

2.1 Radio Propagation Model

In this thesis, two main approaches for modelling the propagation of radio signals are
distinguished by the following reasoning: Propagation models are used to construct

8 2. Background

an accurate signal strength map (SSM). A SSM represents the distribution of RSSI
values from an AP over the space of an indoor scene. Therefore, the two approaches
are distinguished by which means these RSSI values are obtained. The first approach,
named empirical radio propagation model, is based on the technique to collect a
significant amount of real world RSSI measurements, so that the propagation model
can afterwards predict RSSI estimates for arbitrary locations. It is crucial for this
approach to gather enough information about the interesting zones of the scene.
Furthermore, the data should preferably be collected homogeneously, for example,
by applying a grid to the location space. It can be seen, that depending on the
resolution of this grid, the construction of an empirical propagation model can be a
laborious undertaking. Additionally, this approach becomes even more expensive if
changes in the environment happen, for example by relocating APs or reorganisation
of furniture. Such changes make a recalibration of the propagation model mandatory.

Due to the expensive nature of the empirical approach, the research in this areas has
been focused on the alternate idea to create the sought RSSI distributions artificially
by reasoning about the rules of radio propagation. Therefore, the class of these
models is named analytical radio propagation models. The most basic one is given
by assuming an idealized free-space environment and the corresponding quadratical
signal power loss with respect to the distance between the current location and
the sender. This radio propagation model is called ideal path-loss model and has
therefore been ranked lowest in figure 2.1. The first adaptation to the environment
conditions is done in the general path-loss model by assuming a linearly elevated
quadratical power loss. The linear coefficient has to be determined empirically and
can be assumed to be higher for scenes with more Non Line Of Sight (NLOS) than
LOS conditions as more obstacles in the scene lead to a higher probability of signal
absorptions.

Therefore, the analytical models needs to be adjusted with empirical estimated pa-
rameters as well. These unknown parameters of the analytical propagation models
are called free parameters. Another parameter driven analytical model has been
described in the RADAR system [2]. The presented model is the so called Wall
Attenuation Factor (WAF) model. The basic assumption is given by an assumed
constant signal decay at each obstacle intersection on the straight line between the
sender and the simulated location in space. The model is easily enhanced to simulate
different types of obstacles, and will therefore be called multi-material WAF. The
free material parameters of the multi-material WAF have also to be found empiri-
cally. And the only physical effect, that the WAF simulates is an absorption of the
signal

An alternative approach, the dominant path model [1] adds the simulation of signal
reflection. The change of direction of the signal at a material intersection is computed
and the signals on the dominant paths (i.e. the signals with the maximum power)
are traced until exhaustion. Their aggregated information of the traced paths will
be used as the basis for the SSM.

As a general rule, more sophisticated radio propagation models can be obtained
by simulating more of the physical effects that influence the propagation of radio
signals. Such effects are especially found at the transition boundaries of optical
media, for example between air and solid material. The following physical effects
can be considered:

2.1. Radio Propagation Model 9

Figure 2.1 This figure shows the hierarchy between analytical radio propagation
models of different complexities on the left side. On the right side, the other major
approach, the empirical propagation model, has been highlighted.

Absorption: The rate of power loss at a media intersection, as some of the energy
of the signal is transformed into other energy forms as for example heat.

Reflection: The change of direction of a signal at an interface between two differ-
ent media. The angle of the incoming direction equals the angle of the outgoing
direction with respect to the surface normal (see figure 2.2). Only a part of
the signal is reflected, the remaining part of the signal follows the rules of the
next effect.

Refraction: The change of direction at a media intersection for the unreflected
part of the incoming signal. The unreflected part of the signal enters the new
optical medium, and depending of the frequency of the underlying wave of
the signal and the refractive index of the medium, the direction of the signal
changes.

Diffraction: If the underlying wavelengths of the simulated signals are in the
magnitude of the physical obstacles, the diffraction effect leads to a change of
directions in the form of bending around the corners of these objects.

Interference: The phenomenon, that the overlapping waves lead to new wave
forms. These superimpositions can either increase or decrease power of the
signal.

Scattering: Small obstacles in the size of particles and rough surfaces induce a
noisy reflection of the signal.

Polarization: The orientation of the underlying waves for the radio signal influ-
ences the absorption rate at different material types.

A simulation of the radio propagation, obeying to a selection of these effects, can be
obtained by raytracing algorithms. A requirement for such a raytracer simulation
is the knowledge of the material parameters controlling the absorption rate and the
change of direction due to reflection, refraction and diffraction. The combination
of these material parameters controls the rate of signal strength decrease at media
intersections and the amount of multipath effects due to reflection and diffraction.

10 2. Background

Figure 2.2 The two optical effects reflection and absorption occur at the transi-
tions between materials with different optical densities. They can be simulated with
raytracing algorithms. The employed PHOTON raytracer, described in 2.1.1, is
configured to model only these two effects.

Furthermore, an initial signal strength for a simulated ray is needed. A simple model
of these optical effects, as primarily used in this thesis, is defined by a numerical
value for rate of reflection and the rate of absorption for each material and one
additional parameter for an initial signal strength of each AP class. The values
of these parameters are assumed to be initially unknown and have to be trained.
Therefore, the number of trainable parameters nfree for the employed model is:

nfree = 2nmat + napcls

with nmat as the number of different materials and napcls as the number of different
AP classes.

A strategy for finding these free parameters of the model consists of comparing real
world measurements at different locations with the corresponding simulation results
of the raytracer and use the minimum averaged error over all locations as the target
for an optimization algorithm. Of the different parameter optimization methods,
that were evaluated, Genetic Algorithms, described in 2.1.2, have shown to be most
effective.

2.1.1 PHOTON Raytracer

The PHOTON raytracer [23] that is used1 for the radio propagation model represents
a deterministic approach to model radio propagation with concepts from geometrical
optics. The signal of a radio wave is modelled as a single particle, called PHOTON,
that travels on a straight line until intersecting with another physical medium. At
these intersections the physical effects reflection and absorption are simulated. Even
though it is possible to simulate behaviour of radio propagation that is more complex
than diffraction, this has not been used in the presented setup. Instead a simpler
form of Bidirectional Reflectance Distribution Function (BRDF) is configured by
the reflection parameter β ∈ [0, 1] and an absorption parameter α ∈ [0, 1]. The

1During the preparation phase of the thesis a fast 2D raytracer has been implemented that was
able to simulate 60 raytracing frames per second with basic transmission and reflections rules. It
would probable be possible to use this implementation to simulate dynamic effects as opening of
doors or the body shadow of moving people.

2.1. Radio Propagation Model 11

Figure 2.3 Signal Strength Map for one AP from a raytracing generated radio
propagation model. This is an example of the output from the PHOTON raytracer
for an AP of the UMIC scene on a voxel size of 0.2m

evaluation of these parameters works as follows if N is the number of PHOTONs
hitting a material:

1. (1−β)N PHOTONs are absorbed, therefore βN PHOTONs remain for trans-
mission.

2. (1−α)βN PHOTONs are refracted and continue to travel at the same direction
and the remaining αβN PHOTONs are reflected and travel in the inverted
input direction.

After simulating the paths of all PHOTONs by applying the BRDF recursively,
the paths are drawn into the 3D space as voxelized lines. These lines are further
smoothed through an anti-aliasing step. The sum of the individual power values
of all overlapping lines determines the resulting power value of a voxel therefore
handling multipath effects as in [11]. A final smoothing step is given by applying a
three dimensional Gaussian filter.

The raytracer has been developed for the simulation of radio waves emitted by GSM
base stations in outdoor intracity scenarios. Experiments have shown an average
error between measured and predicted signal strength within 6− 8dBm.

The free parameters of the PHOTON raytracer can be estimated by Optimization
Algorithms. The author of the raytracer has successfully employed the Levenberg-
Marquardt algorithm. But in the context of this thesis, Genetic Algorithms have
shown lower errors in the range of 3− 5dBm for the UMIC indoor scenario.

Another interesting possibility of the PHOTON raytracer is the modelling of antenna
patters by using Spherical Harmonics [22]. Spherical Harmonics can be compactly

12 2. Background

represented by a set of coefficients for the corresponding functional forms. These co-
efficients lead to another set of free parameters, and therefore a larger search-space
for the Optimization Algorithms. Due to the increased search-space, more train-
ing data in form of manual measurements are needed to offset for a phenomenon
commonly referred to as Curse of dimensionality. This phenomenon describes the
statistical problems that arise when the volume of the high-dimensional space in-
creases so fast that the training samples become sparsely distributed. Therefore,
this technique was not employed in this thesis for the sake of simplicity.

2.1.2 Optimization with Genetic Algorithms

By using an Optimization Algorithm, it is possible to find a set of parameters for a
model that minimizes a given cost function. If the cost function evaluates the error or
the ”quality”of the model, the found parameters are optimal with respect to the cost
function. A set of nfree parameters can also be understood as an element of a nfree-
dimensional search-space in R. The cost function that is given by a nfree-parameter
controlled raytracer run can be assumed to be non-linear and non-differentiable due
to the recursive nature of the involved algorithms. Furthermore, it can be safely
assumed, that the function is non-convex leading to multiple local optima.

Of the three evaluated heuristics: Minimum Least Squares, Simulated Annealing
and Genetic Algorithms, the last one was capable to generate the best results with
respect to the reached optimum. In a Genetic Algorithm a set of parameters is called
a candidate solution (in the search-space) or simply referred to as an organism. The
search for the best set of parameters, also referred to as the fittest organism, is an
iterative procedure. The procedure starts with an initialization step where a prede-
fined number of organisms are created randomly. Depending on prior information
it is sensible to seed organism in regions of the search-space where optima are more
probable. In the context of the given optimization problem, it makes sense to use
prior knowledge of the estimated power levels of common APs.

After the initialization, the fitness of each organism of the population is evaluated
by calculating the result of the underlying cost function. In the present use case
this means a full raytracer run over all APs and the aggregation of the error at all
measured locations. Then, the main iteration of the algorithm starts by choosing a
proportion of the population for breeding by using the magnitude of the fitness of the
organisms as the selection criteria. Breeding leads to new organism and therefore to
the exploration of the search-space. New organism are breeded by choosing a pair of
parent organisms and crossing over their genes (the nfree-parameters) by selecting
genes randomly from each parent. Additionally to this random selection, a random
mutation of the genes can also be applied to allow for a deeper exploration of the
search-space.

For each breeded organism the fitness will then be evaluated and used to select a
predefined number of the fittest children as the new population for the next iteration
step. Different termination conditions can be chosen, like a maximum number of
generations/iterations or a minimum needed change toward a minimum cost target.
Through this evolutionary inspired selection process the convergence to an, at least
local, optimum of the cost function is guaranteed.

2.2. Positioning 13

2.1.3 Error

The error for a radio propagation result will be determined by comparing the corpus
of measurements m with the simulation results x for each AP configured with nfree
.

RPE(nfree) =
1

NapsNlocs

Naps∑
a=1

Nlocs∑
l=1

||ma,l, xa,l||

where xa,l is the simulation result for AP a and location l. Likewise ma,l is a collected
measurement for AP a and location l. Naps is the number of available APs and Nlocs

the size of the training corpus. For ||m, d|| the l1-norm, the absolute delta |m− s| is
used. Therefore, the Radio Propagation Error (RPE) is simply the averaged error
over all collected measurements at the different locations in units of dBm.

Another variant of this error that is used in literature is the RMS-RPE. This error
uses the rooted averaged euclidian distance, or the l2-norm, as a metric and is given
by:

RMS −RPE(nfree) =
1

NapsNlocs

√√√√Naps∑
a=1

Nlocs∑
l=1

(ma,l, xa,l)2

The unit of this error is also given by dBm.

2.2 Positioning

The task of Positioning is defined as determining the physical position of a stationary
device by using information received by the sensors of that device. This information,
extracted from some measured signals, is obviously required to be related to the
that position for relevancy. The measured signals are usually obstructed by noisy
effects that come from various sources. The performance of a positioning system
is defined over the error that is given by the distance between the real position
and the estimated one. A well performing positioning model will therefore have to
compensate these noisy effect for minimizing the position error

The source of information that is exploited for positioning in this thesis is given
by measuring the Received-Signal-Strength-Indicator (RSSI) values of available APs
with Wi-Fi capable devices. The RSSI value is a measure of the magnitude of
the electromagnetic field at some physical location. The field is emitted by the
antennas of an AP with a known location. The RSSI value is expressed in dBm
which represents the remaining power of the emitted electromagnetic field in relation
to the reference unit of one milliwatt. And explicitly by:

x = 10log10(1000p)

if p is the power at the source of the electromagnetic field given in watt and x is the
measured RSSI value.

Alternate interesting sources of information that are exploited by positioning systems
and that were analysed in recent research [10] are:

14 2. Background

• Time Of Arrival: TOA based methods deduce the distance between transmit-
ter and receiver by comparing the timestamp of a packet, originating at the
transmitter with the local timestamp of the receiver. Prior knowledge of the
speed of the transmitted signal combined with the timestamp difference can be
used for estimating the covered distance of the signal. A source of error is in-
troduced by asynchronous clocks and NLOS conditions that lead to multipath
effects.

• Time Difference Of Arrival: Methods based on TDOA use the difference of
two TOA measurements emitted by signals at exactly the same time at dif-
ferent APs. By using only this difference the requirement of a synchronized
clock between the different transmitting APs and the receiving device can be
dropped. But errors induced by timestamp affecting NLOS conditions remain.

• Angle Of Arrival: AOA based methods rely on measuring the angle of the
incoming signal at the receiver with directional antennas. A source of error
is induced by NLOS conditions leading to receiving signals of the same AP
from different directions. And another error source in the probable incomplete
knowledge of the orientation of the receiver. The requirement of directed
antennas at the receiver excludes the use of the commodity WLAN hardware
that is currently available.

Using the RSSI value as the primary source of information for the positioning system
makes a good radio propagation model mandatory. Two large sources of errors are
expected. At first, there is the error originating in the unpredictable measurement
behaviour or other noisy effects of the Wi-Fi capable devices. And the other class
of errors originates in an inadequate modelling of the radio propagation. By using
a raytracing generated radio propagation model, the reduction of such errors was a
major focus in the presented approach. Especially the inherent modelling of NLOS
conditions makes a raytracing approach promising.

Without a raytracer, one has to resort to approximate the dampening effects of
walls by introducing an attenuation parameter that determines the magnitude of
dampening at a material intersection. Such an attenuation parameter would be
highly material dependent. In the raytracer approach, the corresponding modelling
is represented by the interaction of the α and β material parameters of the employed
basic BRDF.

Another source of noise with a high impact on the RSSI values is given by the shadow
effect of the human body. Radio waves with 2.4GHZ are easily absorbed by materials
with a high proportion of water. Furthermore, it is expected that location aware
devices are attached or very close to the owner of the device, therefore boosting this
dampening effect.

2.2.1 Techniques

There are different positioning techniques that have been developed by using the
mentioned information sources. One of the simplest techniques is called Proximity
Sensing that uses only the identity of the transmitter instead of any distance or angle

2.2. Positioning 15

Figure 2.4 Positioning with triangulation techniques. The length of edges of the
triangle is determined by ratio of the RSSI values of between the transmitters T1
and T2.

related measure. The position of the receiver is assumed to be the position of the
transmitter. If multiple transmitters are available, a choice has to be made between
them. This choice is guided by using the maximum signal strength, and therefore
introducing a range related information.

Explicit usage of range or angle related information is made by techniques that
rely on triangulation for positioning. An example of such an approach is called
Lateration. Lateration uses the ratio between the RSSI values of two transmitters for
finding the two locations in a 2D space that have the property to be the third point of
triangle that includes both transmitters as the other points. The triangle is defined
by the property that the variable edges between the transmitter and the unknown
location of the receiver have the same ratio as the RSSI values. The approach can
also be generalized to either multiple transmitters or other information sources like
TDOA, then called Hyperbolic localization, or AOA, then called Angulation.

Another group of techniques can be gathered under the topic of fingerprinting. These
approaches rely on knowledge of the surrounding of the transmitters. These knowl-
edge has either to be empirically collected or analytically modelled and has to be
stored for efficient access during the localization phase. In the localization process
the collected information is compared with the stored data and the best matching
location is chosen.

The empirical construction of a fingerprinting map makes it mandatory to rebuild
this map if the environment changes. By employing analytical models, like raytracing
generated signal strength maps, it is easier to adapt to environment changes. But the
initial costs of such models can be higher. For example in the case of the raytracer,
a 3D Map containing probably unknown materials is needed.

16 2. Background

2.3 Tracking

Tracking is the generalization of the Positioning problem. Whereas Positioning is de-
fined as a stationary localization problem, Tracking drops the immobility constraint
by allowing the receiving device to move over time. The simplest approach for Track-
ing is therefore the sequential execution of a Positioning algorithm with disregard
to any structural dependency between the information at different timestamps. But
doing so, does surely yield an inferior localization result, as the sequential nature of
the tracking problem is a source of valuable information. Prior knowledge like the
maximum walking speed, that is usable as a constraint on the maximum distance
between two successive positioning results, can easily be exploited.

It is also required to incorporate this source of information in order to offset for the
much larger search-space that is given by the Tracking problem. The search-space
for the Positioning problem is linearly dependent on the resolution and the size of
the modelled space. In the worst case that is a high resolution 3D space as used
in the UMIC scene, with around 2 · 106 solutions representing cubes with edge size
20cm. In contrast, the solutions for the Tracking problem are sequences of locations
with an additional measurement specific resolution that determines the length of
that sequence. This length T has an exponential impact on the size of the search-
space. An input sequence of signal vectors x with T timeframes, represented as xT1 ,
leads to a solutions sequence sT1 . And if the representation of the space is made of S
disjunct positions, this would induce ST possible solution sequences. Consequently,
a brute force search, probably computationally tractable for the singular positioning
problem, has to be excluded as an algorithmic attempt for the Tracking case.

There are two approaches to model the state space of possible locations. Either the
space is assumed to be rasterized or segmented into ”spaces” of interest with some
resolution factor for adjusting the granularity, or space is assumed to be dense with
real values for the two or three possible dimensions. The first approach leads models
based on Markov chains like Hidden Markov Models (HMM). Since such models have
a finite number of states, the computation of a solution involves making decisions
between different states by relying on the evaluation of their properties. A major
part of this thesis studies different aspects of HMM based models.

In contrast, in the second approach a position, given in real values, is updated
by some function configured with prior knowledge of the environment or of the
behaviour of the moving person. The evaluation of this function results in the next-
best real valued position. Examples of this approach can be found in the form of
Particle Filters or in the different forms of Kalman Filters.

2.3.1 Mobility Models

The different approaches for tackling the sequential nature of the tracking problem
have in common, that they use prior information of the shape of the environment or
prior knowledge of the rules that a moving device has to obey. There are multiple
sources for extracting such information.

A deterministic mobility model can be employed, if the speed and acceleration of a
moving device are available. Combining such information with the laws of physics,

2.3. Tracking 17

Figure 2.5 The Tracking problem consists of finding the best output sequence sT
′

1 of
positions for an input sequence of measured signals. Both sequences are not required
to have the same length due to probable further preprocessing steps.

especially the Newtonian laws of motion, gives valuable hints for finding the best
solution for the tracking problem. Tracking vehicles in an outdoor scenario is a
classical example for a case where the corresponding required runtime information
is also available from the built-in sensors. On the other hand in indoor scenarios,
it is less likely that the availability of information as speed or acceleration can be
presumed.

Another class of mobility models are derived from stochastic processes. A very simple
one is given by the Brownian motion or more general the Random walk model. Both
models simulate movement by stepping forward in a randomly chosen direction. The
Brownian motion model assumes an asymptotically small step-width approaching
zero. These models can easily be enhanced to use other probability models instead
of simple uniform or normal ones. This can be done by incorporating the history
or the predecessors of states in the sequence and leads to the formalism of Markov
chains.

The information of direction is already used in a first order Markov chain, but for the
evaluation of direction changes higher order Markov chains are needed. For example
in the presented localization system, the direction information is used in a first order
HMM to penalize movements into directions with less free space. The degree of free
space at a given location and a given direction can be retrieved from the 3D scene.

This leads to the so called Geographical-restriction models. These models derive
rules for the transition from one state to another by extracting information from an
available map of the environment. Such a rule is given by disallowing the transitions
into regions of space, that are blocked either directly or indirectly by obstacles. A
further modelling of temporal variations in these restrictions can be used to mark
obstacles as active or inactive. An obvious use-case is given in the form of time
controlled door locks.

Another simple model, driven by prior geographical information, is the so called
Pathway mobility model for vehicle navigation. A map containing a grid of streets
and intersections is used to model movement restricted to the streets with a simple
decision rule for the crossings. At each crossing the probability of moving forward
is 0.5 whereas the movement to the left or the right is 0.25. The constraints of such

18 2. Background

a model can easily be projected into an indoor scenario, but here, also allowing a
change in the opposite direction should also be considered.

The last class of mobility models rely on exploiting the behaviour of multiple syn-
chronously moving devices. Therefore, they are called Group mobility models. It is
for example plausible to assume, that vehicles on a street that are near to each other,
have correlated speed and direction properties. The same holds true for swarms of
animals or human movement on crowded places.

2.3.2 Error

The error of a Tracking result sT1 can be given in the form of the Root Mean Square
Tracking Error (RMS-TE). The RMS-TE between the correct sequence of positions
rT1 and the estimated sequence sT1 is defined as:

RMS − TE(sT1 , r
T
1) =

√∑T
t=1(||rt, st||)2

T

with ||rt, st|| as the 2D or 3D euclidian distance between the real positions rt and
st. The performance of a localization system can be given by evaluating the error
over multiple tracking attempts stored in an evaluation corpus C.

RMS − LE(C) =

√√√√ 1

N

N∑
c=1

1

Tc

Tc∑
t=1

(||rc,t, sc,t||)2

where Tc is the length of a sample from the corpus. This error can also be evaluated
for the positioning problem by assuming that Tc = 1 for all pseudo-paths of the
corpus. In literature a variant of this error is also given by using the simpler l1-
norm:

LE(C) =
1

N

N∑
c=1

1

Tc

Tc∑
t=1

|rc,t − sc,t|

This error should be referred to as the averaged Localization Error evaluated on
a collected corpus of tracked paths. All three error variants are given in the unit
meter.

2.4 Bayesian Pattern Recognition

For understanding the approaches to the localization problem, that are presented in
the following sections, a general understanding of the basic principles of Bayesian
inference is needed. Therefore, a short introduction into this very popular approach
to the problem of machine learning and pattern recognition is given.

In Bayesian inference, the Bayes theorem is used to compute how the degree of belief
in a proposition changes due to available evidence. In the context of RSSI informa-
tion based localization, the proposition is: ”The device is there.” with the evidence:
”It has received these RSSI readings”. Since such a proposition is inherently a de-
cision for a state2 in a however modelled environment, it will be represented by s.

2Another convention for formalizing the concept of the proposition is given by the notion of a
class that will be decided upon.

2.4. Bayesian Pattern Recognition 19

The simplest state space is defined by the 2-state case: ”The received email text is
either spam or ham”. In this minimal example, the previously mentioned evidence
is a representation of the text in a machine processable form. Such a form of the
evidence is commonly called Feature Vector and should be denoted as x.

For the ”decision making process”, that should be called Decision Rule, it would be
beneficial to have a measure of the quality of the different possible decisions, the
different possible states under the feature vector represented evidence. In Bayesian
inference this measure is given by the joint probability between the state s and the
feature vector x with:

p(x, s)

which evaluates under the definitions of probability theory to a scalar value in the
range [0..1]. Furthermore, if x and s are conditionally independent, the joint proba-
bility can be factored into the two conditional forms that are essential for the Bayes
theorem:

p(x, s) = p(x|s)p(s) = p(s|x)p(x)

Under the Bayes theorem, the interpretation of the probabilities p(x|s), p(s) and
p(s|x) is indicated by their commonly used names. p(s|x) is called the posterior
probability as it represents the belief that the state follows the evidence given by
x. p(s) is the prior probability and represents an evidence independent knowledge
about the probability how often the state s will be observed. And finally, p(x|s) is the
state-conditional probability that represents the probability to observe the evidence x
under assumption that the environment is in state s. p(x), the probability to observe
a specific evidence, has not been given a dedicated name as it will be unimportant
for the sought Decision Rule.

The Decision Rule should obviously lead to a high quality decision. This should
therefore be the decision with the maximum joint probability. By this reasoning,
the Bayes Decision Rule rbayes : x→ s is defined as:

rbayes(x) = argmax
s

p(x, s)

which factors according to the laws of conditional probabilities into:

rbayes(x) = argmax
s

[p(s|x)p(x)]

= argmax
s

[p(s|x)] , since argmax
s

is independent of p(x)

This is an intuitive result. A decision that is based on the posterior probability
leads to the same result as using the joint probability. But it is still unknown how
to obtain the posterior p(s|x). Therefore, the Bayes theorem will be used again:

p(s|x) =
p(x|s)p(s)
p(x)

Inserting the factored posterior into the Decision Rule:

rbayes(x) = argmax
s

[
p(x|s)p(s)
p(x)

]
= argmax

s
[p(x|s)p(s)] , since argmax

s
is independent of p(x)

20 2. Background

This is not an intuitive Decision Rule any more, but probability models for p(x|s)
and p(s) can be learned from the environment. The prior p(s) is a discrete PDF,
due to the discrete nature of the states3, that can be determined by simple counting
of the occurrences of s.

Modelling the state-conditional distribution p(x|s) is more complicated. The vector
space of x, the numerical representation of the evidence, can have manifold shapes.
It can be of categorical nature leading to a discrete PDF, or, if it represents physical
measurements it will become a continuous one. The analytical choice of the form
of the PDF, whether it is a multi-variate Gaussian, a mixture density or another
complex distribution, can be termed: to apply model assumptions. If the prior
analysis has lead to a p(x|s) that is modelled according to the true nature of the
environment, the free parameters of the model need to be determined. Similar to
learning the structure of the prior p(s), the parameters of p(x|s) can be learned
from the environment. But due to the coupling of s and x, special state-annotated
evidence-data is needed. Ignoring the problem of gathering this data, parameter
estimation techniques like Maximum-Likelihood can then be applied to the set of
training samples. If p(x|s) is modelled as a Gaussian, this results in estimating the
mean and the variance.

Summarizing the results: The Bayes Decision Rule conducts a search for the state
s with the maximum posterior probability p(s|x) for an observed feature vector x.
The Bayes Decision Rule is therefore a function with input given by some measured
evidence x leading to the output of the most probable state s of the environment.
Instead of directly evaluating the posterior probability p(s|x), the prior p(s) and
state-conditional p(x|s) are employed as they can be learned from the environment.
p(s) can be easily learned by counting. And for p(x|s), suitable model assumptions
must be chosen and the free parameters of the model need to be trained.

If these concepts are applied to the positioning problem with RSSI measurements,
this leads to the following example model:

1. A state s is an enumerable region of space, a location.

2. The feature vector x is the jointly received vector of RSSI values for different
APs.

3. p(s) is the probability to be in a specific location. In a geographically-restricted
mobility-model, p(s) would be zero for unreachable regions.

4. p(x|s) is the probability to receive the measurements x at the location s. p(x|s)
can be modelled as a multi-variate Gaussian, with a mean vector that repre-
sents the anticipated AP-specific RSSI values at the location s. Assuming
equal noise over all APs, a signal variance of around 5dBm will be chosen.

5. The AP-specific means of p(x|s) will be obtained from a radio propagation
model.

3It is possible to assume a continuous state space as well, but this has not been done for
simplicity.

2.5. Hidden Markov Models 21

Figure 2.6 Markov chain with a (0, 1, 2) transition model. The choice of the future
state depends only on the present state.

For a new RSSI vector observation x the Bayes Decision Rule is used to decide for the
most probable location s that explains the observation. This means evaluating the
posteriors p(s|x) for all all locations, and selecting the location s with max (p(s|x)).
Due to the unavailability of a direct form of p(s|x), the maximization is carried out
over the known prior p(s) and the state-conditional p(x|s).

If the prior p(s) is assumed to be constant for all s, then this will lead to the LMSE
based localization approach that will be described in section 2.7.

2.5 Hidden Markov Models

The Hidden Markov Model approach to the localization problem leads to the first
algorithm that is based on the principles of Bayesian inference. But before the
nature of the state-conditional is discussed, the formalism of the Markov Chain is
introduced to derive the source for the prior probability.

The process of movement through space can be modelled as a Markov chain. Each
possible discrete position in space, their number depends on the rasterization res-
olution, translates to a state in the Markov chain. A Markov chain is a sequence
of states in a stochastic process where the Markov property holds. The Markov
property refers to the memorylessnes of the process, that is given by the constraint
that a future state depends only on the present state and ignores all other preceding
history.

Such a Markov chain is parametrized by transition probabilities. The transition
probabilities form a discrete probability distribution. A transition is the pair s′ → s.
The conditional probability for a transition, the probability that the future state s
follows after the present state s′ is given by p(s|s′). The normalization constraint of
a PDF holds: ∑

s

p(s|s′) = 1, ∀s′

A special transition model, allowing only three predecessor states, is the (0, 1, 2)-
model (see figure 2.6) that is defined by:

2∑
i=0

p(s+ i|s) = 1

with s + i representing a state index as the notation st is used for indexing over
time frames. The (0, 1, 2)-model is used for time alignment, that has the goal for

22 2. Background

Figure 2.7 In a Hidden Markov Model the states are not directly observable. But
the output of the states can be measured as sequence of feature vectors. From these
observations the best matching state sequence sT1 can be recovered.

compensating distortions in the speed of the stochastic process. If the process is
only developing slowly, for example a slowly moving localization target, more 0-
transitions can be used. In a 0-transition the process remains in the present state.
The opposite effect have 2-transitions. They are employed to model accelerated
phases of the stochastic process. Elevating the one dimensional (0, 1, 2)-model into
the three dimensional localization space with six degrees of freedom leads to the
rather clumsy notation of ((0, 1, 2)1, (0, 1, 2)2, .., (0, 1, 2)6)-model. By combining the
0-transitions and counting only the number of predecessors on each dimension this
should be called (5, 5, 5)-model. The (5, 5, 5)-model is parametrized by 125 possible
transitions for each state.

In a Hidden Markov Model (HMM), the states of the Markov chain are not directly
observable. But the output of the states, also called the emission of the states,
is visible. The visible emission x is coupled to the hidden state s through the
probability distribution p(x|s). Therefore, by observing a sequence of measurements
and relating them to the emission probabilities, the HMM can be used for assigning
probabilities to different hypothesized hidden sequences which on their part are lists
of locations.

This emission probability p(x|s) represents the state-conditional probability in the
Bayesian approach and has to be learned from the environment. In the context of
localization, the state s represents a position in space. Therefore, it is understood
as a model for the probability to receive a special signal constellation at a given
position. Emission probabilities are often modelled as multivariate Gaussians or
more complex mixture densities. The chosen model properties for the emissions in
this thesis are discussed in the later section 2.5.4, where the simplification of the
mentioned Gaussians is of concern.

2.5. Hidden Markov Models 23

2.5.1 Decision Rule

Finding the best matching sequence of positions sT1 for a given sequence of mea-
surements xT1 is defined under the Bayesian approach by finding the maximum joint
probability:

sT1 = argmax
sT1

p(xT1 , s
T
1)

applying the product rule leads to:

sT1 = argmax
sT1

T∏
t=1

p(xt, st|xt−11 , st−11)

In the HMM formalism, there is no condition on the previous emission vectors. They
can be dropped:

sT1 = argmax
sT1

T∏
t=1

p(xt, st|st−11)

and there is only a dependency on the previous state (first-order Markov):

sT1 = argmax
sT1

T∏
t=1

p(xt, st|st−1)

= argmax
sT1

T∏
t=1

p(st|st−1) · p(xt|st−1, st)

= argmax
sT1

T∏
t=1

p(st|st−1) · p(xt|st)

Therefore, calculating the probability of a sequence sT1 is reduced to iteratively com-
bining the transition probability of a jump and the emission probability for a mea-
sured signal vector xt at the jump destination. This is a very cheap operation, so
p(xT1 , s

T
1) can be determined in fractions of microseconds.

With this representation, a solution for the maximization can already be found
with a brute force approach. The product has to be evaluated for all possible state
sequences sT1 . But with N possible transitions from one state s′ into another s, the
computational complexity is given by NT solutions. This makes a brute force search
intractable.

2.5.2 Viterbi Algorithm

The Viterbi Algorithm is an efficient dynamic programming algorithm for finding the
most probable state sequence sT1 for an observed vector sequence xT1 . The Algorithm
exploits the memorylessnes of the model that is induced by the Markov property.
The Algorithm is defined as a set of recursive equations starting with:

Q(t, s) := max
st1:st=s

t∏
τ=1

p(xτ , sτ |sτ−1)

24 2. Background

Figure 2.8 The paths through the lattice represent the different possible state
sequences sT1 under the (0, 1, 2)-model assumptions. In the visualized model, a se-
quence has always to start in s1. In the localization context, where states represent
positions, the sequence can start anywhere.

the decomposition of the predecessor states at t− 1 with:

[...→ (s, t)] = [...→ (s′, t− 1)] [(s′, t− 1)→ (s, t)]

leads to:

Q(t, s) := max
s′

[p(xt, s|s′) · max
st−1
1 :st−1=s′

t−1∏
τ=1

p(xτ , sτ |sτ−1)︸ ︷︷ ︸
Q(t−1,s′)

]

Figure 2.9 The recursion equation Q(t, s) is computed by deciding for the prede-
cessor state s′ with maximum Q(t− 1, s′).

and can therefore be simplified to:

Q(t, s) := max
s′

[p(xt, s|s′) ·Q(t− 1, s′)]

Each local decision s′ is stored in a backpointer array B(t, s) and is retrievable as
follows:

B(t, s) := s′ = argmax
s′

[p(xt, s|s′) ·Q(t− 1, s′)]

2.5. Hidden Markov Models 25

The computational complexity for evaluating Q at all time frames T is T ·S ·N if S is
the number of states and N is the number of transitions. The memory requirements
for the Viterbi Algorithm are determined by the size of the backpointer array which
is given by T · S.

The best matching sequence with the maximum joint probability p(xT1 , s
T
1) is found

by evaluation of Q at the final time frame T . The last position sT of that sequence
is decided by:

sT = argmax
s

Q(T, s)

Starting with sT , the full sequence sT1 is reconstructed by recollecting the stored
decisions from the backpointer array. This can be formalized by:

S(T) = sT

S(t) = B(t, S(t+ 1))

so finally:
sT1 = argmax

sT1

p(xT1 , s
T
1) = [S(1), S(2), .., S(T)]

Assuming large models, as the presented UMIC model, with S = 2 · 106 possible
states and T = 100, the backpointer array can become large. By using a 4-byte
int32 state space, this leads to 400MB memory usage. Although this can further be
reduced by storing only the compact transition indexes i ∈ 1..125 for the (5, 5, 5)-
model. With only 125 distinct values, a 1-byte int8 datatype is enough, which
reduces the memory usage down to 100MB (see 5.2.2 for more details).

2.5.3 Higher Order Models

Incorporating more history in the transition probabilities leads to HMMs of higher
order. The presented first order HMM uses only the present state for deciding which
future state is the most probable. A second order HMM uses the first state of
the history as well. Thus, the next state s is now dependent on two predecessor
states instead of one (see figure 2.10). The transition probability is now given by
p(s|s′, s′′). The number of states for a second order HMM grows by the factor of N
transitions. For each state, N new states are needed that have a configured history
of the corresponding transition. The computational complexity is therefore T ·S ·N2.
The memory requirements due to the backpointer array grow to T · S ·N .

Although the increase in complexity is quite significant, only with higher order mod-
els it is possible to model the probability of movements like turning left. It would be
plausible to increase the probability of transitions that change directions in crossways
and lower them in pathways. So from a computational standpoint, the enhancement
seems feasible, but higher order models have not been fully implemented in the
thesis.

2.5.4 Logspace

The recursion equation Q of the Viterbi Algorithm multiplies probabilities. Prob-
abilities are defined to be 0 <= p <= 1. Therefore, the application of many such

26 2. Background

Figure 2.10 The states of a second order HMM carry the history of one predecessor
state (first index) and the current state (second index). Due to this contextualization
the number of states is increased by the factor 2, the number of transitions. Equal
colors represent equal current states.

multiplications leads to numerical underflows. The classical approach to retain nu-
merical stability in the recursions is to transform the probabilities into the negative
logspace. Doing so, leads to a reinterpretation of the probabilities to costs. Instead
of searching for the state sequence with the maximum probability, the task is now
transformed to a search for the minimum costs. It should be noted, that applying
the logarithm to a function is an invariant operation with respect to the maximum.
Therefore, the decision for the resulting sequence will not be influenced.

So starting with the dynamic programming recursion for the local decisions:

Q(t, s) := max
s′

[p(xt, s|s′) ·Q(t− 1, s′)]

and applying the logarithm leads to:

Q(t, s) := max
s′

[log(p(xt, s|s′)) +Q(t− 1, s′)]

with further interpreting as minimum costs:

Q(t, s) := min
s′

[−log(p(xt, s|s′)) +Q(t− 1, s′)]

:= min
s′

[Q(t− 1, s′)− log(p(xt|s))− log(p(s|s′))]

It can be seen, that the evaluation of Q(t, s) is performed very efficient in logspace.
The evaluation of the costs for a candidate state s′ is a simple summing of the stored
transition probability −log(p(s|s′)) and the calculation of the costs of the emission
probability.

In the presented system, the emission probabilities are modelled as a multivariate
Gaussian distribution N (µ, σ) with independent components. An input feature vec-
tor x for a time frame t is D-dimensional. Therefore, the vector represents a list

2.5. Hidden Markov Models 27

of RSSI readings from D Access Points. The RSSI readings are assumed to be
stochastically independent. The analytical form of p(x|s) is given by:

p(x|s) = p(x1, ..., xd, ..., xD|s) =
D∏
d=1

p(xd|s)

=
1∏D

d=1

√
2πσ2

sd

exp

[
−1

2

D∑
d=1

(
xd − µsd
σsd

)2
]

The next model assumption is introduced in the form of a constant pooled variance
for all states and dimensions. This leads to a further simplification of the emission
model:

p(x|s) =
1

C1

exp

[
−C2

2

D∑
d=1

(xd − µsd)2
]

transforming the equation with the negative logarithm:

−log(p(x|s)) =
C2

2

D∑
d=1

(xd − µsd)2 + log(C1)

insertion into the recursion equation and dropping the constants C1, C2 due to the
minimization leads to:

Q(t, s) := min
s′

[Q(t− 1, s′) +
D∑
d=1

(xtd − µsd)2 − log(p(s|s′))]

Thus, in logspace the Gaussian modelled emission probability is simplified to a
distance calculation between xtd and the stored µsd components.

2.5.5 Pruning

Pruning, also known as Beam Search, is a heuristic approach to make the Viterbi
Algorithm more efficient. The basic idea is to skip the evaluation of Q(t, s) that are
determined to be unlikely with respect to the global optimum. Therefore, finding
the global optimum, the most probable sequence sT1 , is not guaranteed any more.
Loosing the global optimum will be more probable if the pruning is too aggressive
and the number of evaluated states becomes too low.

There are two pruning strategies. The first strategy discards unlikely hypotheses
if their probability drops below a threshold that is determined by the probability
Qtop(t) of the top hypothesis:

Qtop(t) = max
s
Q(t, s)

by introducing a factor f , the state hypothesis (s, t) is pruned if:

Q(t, s) < f ·Qtop(t)

With this strategy, the number of unpruned states is variable for each time frame t.

The other strategy induces a hard limit N on the number of unpruned states. During
the evaluation of Q(t, s) for a given time frame, the top-N states are collected for
ensuring their further processing in the next t + 1 time frame. Due to the simpler
memory management, this strategy has been chosen in this thesis.

28 2. Background

Figure 2.11 The general state space model is the base for the discrete or continuous
representation of the sequential nature for a stochastic process. The progress of the
stochastic process, a hidden state sequence sT1 , can only be observed by measuring
a sequence of noisy feature vectors xT1 .

2.5.6 Training

For learning the parameters of the transition and emission probabilities of a HMM,
a corpus of state-annotated measurement sequences is needed. If such a corpus is
available, inference of the parameters of the stochastic models can be performed
with the Baum-Welch algorithm. This algorithm represents the adoption of the
basic assumptions of the estimate-maximize algorithm to sequential data.

But during the development of the presented system, no such training corpus for the
Tracking problem was available. Therefore, the complex intrinsics of the inference
algorithm should not be presented here (see [4] for details).

2.6 Continuous Models

Continuous models are the generalization of models with a discrete state space, like
the HMM, to a continuous state space. Therefore, the once discrete PDF for p(s|s′)
is now modelled as a continuous PDF, often as a Gaussian. But that is the only
conceptual difference to the HMM model, as both are based on the state space
model of figure 2.11. The memorylessnes, analogue to the Markov property, and the
concept of observable emission probabilities are preserved. So the same factorization
for the joint probability p(sT1 , x

T
1) under the first order Markov assumptions can be

derived:

p(sT1 , x
T
1) =

T∏
t=1

p(st|st−1) · p(xt|st)

with the difference of a now continuously distributed p(st|st−1).

2.6.1 Linear Dynamic System

A Linear Dynamic System (LDS), also known under the name Kalman Filter, is
such a continuous state space model that is briefly motivated before continuing with
more flexible concept of the Particle Filter.

The motivation for this approach arises from the following practical problem. An
unknown quantity s should be measured by a noisy sensor. The measured observa-
tion x represents the underlying s distorted by zero-mean Gaussian. If a sequence

2.6. Continuous Models 29

of measurements is available in the form of xT1 , the hidden value of s can be easily
estimated by averaging of the measurements.

The problem will again become more complex if the quantity s is allowed to change
over time. An obvious approach would be to use some form of historical average
of the last measurements to estimate the current true value of s. But how far
should that evaluated window of measurements reach back? If the value for s is
changing slowly over time, a large window capturing a lot of valuable information
is appropriate. But if the value for s is changing fast, this leads to averaging over
high variety information and therefore introduce a new form of error. Here, a short
moving average window is better. This approach can be made more complicated by
introducing a weighed average of the history, probably giving more recent ones more
weight. This reasoning relates to the need for state-conditional probabilities p(x|s),
now the transitions will be investigated.

The other source of information, the transition probability p(s|s′) is modelled by a
non-stationary multivariate linear-Gaussian distribution:

p(s|s′) = N (s|As′, B)

where A is the linear transformation representing the movement vector and B the
initial mean and variance. The requirement of a linearly changing state sequence is
given by the need for integration instead of summing during finding the marginals
of p(xT1 |sT1). A similar restriction is enforced on the emission probabilities. Only
simple PDFs like Gaussians are allowed for p(x|s). Mixtures densities lead also to
problems during integration due to their contained summations.

These limitations were addressed by the introduction variants of that approach. For
example, the extended Kalman filter [14] or the also preseneted Particle Filter, drops
the restriction of linearity in the state changes.

For a more detailed introduction of the LDS technique, it should be referred to [21]
and [4].

2.6.2 Particle Filter

One of the more recent approaches to the tracking problem, that was also evaluated
in this thesis, is given by the Particle Filter (PF) [7]. The model is a response
to the problem that estimating the non-linear movement of a person in an indoor
localization scenario with the linear Kalman Filter is prone to fail. The concepts of
the PF are based on the idea to sample the posterior distribution p(st|xt) directly
for a given time frame t. In the HMM formalism, this posterior distribution is
approximated by the recursion equation Q(s, t). And due to the enumerability of
the discrete states, the Viterbi Algorithm is able to compute p(st|xt) and can thus
decide locally for the state st with maximum probability. The goal of this procedure
can also be described as a marking of the most probable states or locations given an
observed measurement sequence.

The same marking of probable states in a continuous space is conducted if p(st|xt)
is sampled under the conditions of the observations. By generating enough samples,
the best state hypothesis will get the most probability mass. This is in a way an

30 2. Background

analogue to the remaining unpruned states of the pruning HMM. The unpruned
states at a time frame t determine the new set of unpruned states at t + 1 by
evaluation of a new xt. In the Particle Filter, the set of samples at a time frame t
is equivalently used to generate the new set of samples for t+ 1 with respect to the
new observations of xt.

The sampling process is defined recursively4. Let {s(l)t } be set of samples with

cardinality L for a timeframe t and {s(l)0 } an initial set of samples that are drawn

from a p(s0) distribution. Then, the sampling weights {w(l)
t } are defined by:

w
(l)
t =

p(xt|s(l)t)∑L
m=1 p(xt|t

(m)
t)

The weight for a sample is therefore computed from the emission probabilities
p(xt|st) that are obtained from the radio propagation models. The weights sat-

isfy the normalization constraint
∑

l w
(l)
t = 1 and are in the range 0 ≤ w

(l)
t ≤ 1.

They can be understood as a way to explain the importance of each sample under
the current observation xt. The posterior p(st|xt) is represented by the combination
of the samples and the corresponding weight for each sample. The next posterior
p(st+1|xt) is defined by combining the weights of t and the transition probabilities
p(s|s′) to the following mixture:

p(st+1|xt) =
L∑
l=1

w
(l)
t p(st+1|st)

By drawing new samples {w(l)
t+1} from this distribution, the recursive step is com-

pleted. Therefore, the algorithm can be interpreted as to switch between two modes.
At first, the weight of the samples under the observation x is determined by using
the stored p(x|s). The weight defines the number of new samples that are spawned
from this sample. In the context of this thesis: If the sample represents a very prob-
able location for the RSSI readings, the sample location is used as a major source
for the next set of samples.
The following set of samples is then generated by spawning the appropriate number
of samples at each source into the most probable direction/distance given by the
transition probability p(s|s′).

2.7 Least Mean Squared Error

Another localization method, that has been prominently used due to it’s simplistic
principles, is given by the so called Least Mean Squared Error (LMSE). Contrary to
the HMM and the PF based approaches, the method ignores the sequential nature
of the measurements and is therefore not based on the state space model of figure
2.11. The basic idea is given by comparing the RSSI reading of the D-dimensional
measurement vector x with all location s annotated measurements ys of a database
representing the prior knowledge of the distribution. The LMSE uses the euclidian

4A more detailed presentation of the PF can be found in [4].

2.8. Summary 31

distance for the comparison and decides for the location with the least distance. The
LMSE decision rule rlmse : x→ s is thus defined as:

rlmse(x) = argmin
s

[
1

D

D∑
d=1

(xd − ysd)2
]

= argmin
s

D∑
d=1

(xd − ysd)2

The method is derived from the Bayes Decision Rule that has been introduced in
section 2.4:

rbayes(x) = argmax
s

[p(x|s)p(s)]

All locations are equally probable, and the calculation is done in logspace:

rbayes(x) = argmax
s

[log(p(x|s))]

The location-conditional p(x|s) is modelled as a Gaussian with independent compo-
nents: p(x|s) ∼ N (µ, σ). Furthermore, by assuming a constant pooled variance over
all locations and removing the constant coefficients of the Gaussian5, this leads to:

rbayes(x) = argmax
s

[
−

D∑
d=1

(xd − µsd)2
]

= argmin
s

D∑
d=1

(xd − µsd)2

Therefore, under the given assumptions for p(x|s) and if ys = µs the following
equality holds:

rlmse(x) = rbayes(x)

2.8 Summary

A thorough introduction into the general principles that are employed to approach
the localization problem and the radio propagation modelling was given. The
Bayesian approach to the pattern recognition problem was introduced and three
algorithms, the HMM, the PF and the LMSE technique were derived. For the topic
of radio propagation, the basic background information needed for understanding the
primary physical effects that influence the RSSI signal distribution were presented.
Building on that foundations, a brief overview over the mechanics of employed PHO-
TON system was given.

5A similar transformation into logspace has been done with the HMM emission probabilities
p(x|s) in section 2.5.4. A pooled variance, has been used there as well.

32 2. Background

The Tracking problem, the search for the best matching sequence sT1 for a given xT1 ,
has been shown to be addressable with a number of different algorithms. The first
one shown, was derived from the concepts of Hidden Markov Models. The model
assumptions of a HMM, especially the memorylessnes due to the Markov property,
make use of efficient dynamic programming algorithms for finding sT1 possible. The
computations in the Viterbi Algorithm were further simplified by moving the prob-
abilities into logspace and assuming a constant pooled variance on the emission
probabilities. The final computations contain only summations, memory lookups
for stored probabilities and a distance calculation between xt and the stored RSSI
values of the radio propagation model. Since the computations for Q(s, t) are sim-
ple, the implemented system can process around 5 ·106Q(s, t) per second on current
hardware. The proposed Pruning technique leads to a further speed-up of around
one order of magnitude.

The other two presented algorithms are the LMSE and the Particle Filter. The
latter is similar to the HMM as it is also derived from the state space model of
figure 2.11. Whereas, the LMSE approach ignores the additional knowledge given
by the history of the RSSI readings, the HMM/PF respect the sequential nature
of the problem by modelling transition probabilities. As becomes observable during
the later evaluation of the three algorithms, that incorporating this knowledge about
the stochastic process leads to significantly reduced localization error rates.

The Positioning problem will be understood as a special case of the Tracking prob-
lem. The same algorithmic designs are used for finding solutions. Although in the
worst case, a positioning attempt contains only data from one time frame without
exploitable history. In this special case the LMSE approach does represent the most
efficient solution. But it can be assumed, that in the presented use-case of Wi-Fi
based positioning, the signal stream is easily adaptable to employ sequential data.

3
Related Work

This chapter gives an overview over related research that has been conducted on
either modelling the radio propagation of AP transmitters in section 3.1 and over
localization algorithms exploiting this information in section 3.2. Since the larger
focus of this thesis was placed on the localization algorithms, especially the HMM
and PF approach, the latter section is formed more broadly.

An historically important project, especially for RSSI based indoor localization sys-
tems, is given by the RADAR [2] framework. This framework combines the basic
methodology, the appliance of a radio propagation model (the WAF model) to a
localization algorithm (specifically the LMSE), that was also used in this thesis and
other related works.

3.1 Radio Propagation

The two major approaches for the radio propagation model are either manually
building a database of RSSI readings or using an analytical model for simulating
the radio propagation. Historically, the former approach has been used more promi-
nently as it gives a simple procedure to build a map of RSSI values for an indoor
scene. The latter, the modelling by reasoning about the physical nature of the radio
propagation, is a response to the expensive nature of the labour-intensive manual
collection and leads to ray tracing based models of different complexities. A selection
of localization systems that have employed analytical models based on 2D or 3D-
raytracers are presented here. The following aspects of the systems are highlighted:

1. How detailed is the simulation of the physical effects at the intersection points
between rays and scene geometry?

2. Is the transmitter of the signal a simple isotropic model or more complex?

3. What is the source for the 2D/3D-scene geometry?

34 3. Related Work

4. Are the physical properties of the geometry homogeneously modelled or does
the system distinguish between different materials?

5. How are these material parameters obtained?

6. If the material parameters were trained from measurements, what was the
strategy? What was the optimization target?

7. Which error rates have been reached by comparing the simulation results to
real world measurements? How complex were the testbeds?

One of the simplest analytical models for the radio propagation problem has been
given by the RADAR system with the so called Wall Attenuation Factor model
(WAF). The path-loss of the signal is described as a function of the number of inter-
secting walls on the straight line between localization hypothesis and the transmitter
of the signal. The Wall Attenuation Factor influences the rate of power decay at
each intersection and has to be found manually. Different factors for different wall
materials are possible although not used. The reduction of the signal strength is em-
pirically determined to be 3.1dBm for a wall intersection in the analysed scenario.
This model can be understood as a very reduced ray-tracing approach. The line of
sight is the only simulated ray and the attenuation factor corresponds to the trans-
mission parameter of the employed PHOTON raytracer. Although the evaluation of
RADAR has lead to the conclusion that the fingerprinting based approach reaches
better localization accuracy than an also compared analytical model, this has not
stopped interest in this area of research.

3.1.1 2D-Raytracer Models

A more complicated model is given by 2D-raytracers. These models are enhanced
by adding the simulation of reflection effects at the ray intersection points. 2D-
raytracers were investigated in [12] and [13]. The system, presented in [12] uses
heterogeneous reflection and transmission coefficients for different materials, similar
to the PHOTON system. In contrast, the ARIADNE system [13] does not distin-
guish between different materials.

In the ARIADNE system a rasterized 2D-floor plan is automatically converted to a
2D-model of the environment. They have employed a 2D-raytracer that simulates
the basic physical effects like transmission and reflection. Refraction or scattering
have not been simulated. The model ignores rays with a power below a fixed thresh-
old. Similar to the PHOTON raytracer, the individual power values of overlapping
rays are combined by simple summing without anticipating interference effects. The
free parameters of the raytracer model are given by the antenna gain of a single
AP and a transmission and reflection coefficient. Hence, only one material type is
considered. An optimization of these free parameters has been done by running a
simulated annealing optimizer against the RSSI value of only one measured loca-
tion. As described in 2.1.2, the presented localization framework has shown better
convergence with a genetic algorithm optimizer. But modelling different material
parameters and separate antenna gains for different AP classes leads to a higher
dimensional search-space and has therefore probably other convergence properties.

3.1. Radio Propagation 35

Figure 3.1 Schematics of the AROMA 3D-Raytracer. One the left side: ray-
launching for variable antenna patterns and on the right side: material intersection
of rays.

A RPE of around 3dBm and a RPE-RMSE of 3.5dBm has been evaluated1 by
comparing the simulation results of the model against 30 measurements at validation
locations. These values are comparable to the results of the PHOTON model. But
for using only one initial measurement during training of the free parameters, this
is a very good result.

3.1.2 3D-Raytracer Models

One of the earliest works on raytracer generated 3D radio propagation Models can
be found in [26]. The described technique was employed more recently in [8]. The
presented raytracer simulates the physical effects of reflection and refraction. Dif-
ferent antenna patterns are employed. The 3D-scene is imported from CAD output
files or synthesized by interpreting a 2D raster image containing a floor plan. Walls
or other anticipated solid structure from the 2D floor plan are extruded into the
Z-axis with equal height. Different materials are assigned to the different parts of
the 3D-Scene. Instead of applying some training procedure, the material parameters
were taken from literature like [30] and [20]. This is an unique approach compared
to the other presented systems.

The evaluation of the system has been conducted on a 4-room scenario of around
80m2. 3 APs were placed and 3 averaged measurements at 42 locations are after-
wards used for validation. A RMS-RPE of 2.28dBm is reported. The RMS-RPE
degrades to 2.83dBm, if the raytracer uses only the 2D mode. Comparing the per-
formance over different sources of material parameters, the parameters in [30] have
led to the best result.

A sophisticated raytracer driven radio propagation Model is given by the AROMA
framework [9]. The implemented 3D-raytracer is able to simulate the physical ef-
fects of reflection, refraction and diffraction. The diffraction model is based on

1The reported value of 0.65dBm MSE has been corrected to 3.5dBm to be comparable to the
other systems. Restoring the correct values was possible since a known number of 30 locations
were used.

36 3. Related Work

the Uniform Theory of Diffraction (UTD). AROMA is the only presented system
that models the human body shadow. Detailed antenna modelling is also possible.
The different properties of the antenna model that can be configured are given by
transmitting power, frequency, maximum gain and radiation pattern. Figure 3.1 il-
lustrates these model assumptions. Configuration values for isotropic and half-wave
dipole antenna patterns are predefined. The input for the scene geometry can be
given either in Blender or Google SketchUp format. Different material parameters
are assigned to objects of the scene. It is unclear how the material parameters are de-
rived, but the system exposes a preconfigured database for commonly used building
components. The simulation of the human body shadow relies on the UTD model
with the basic assumption that a human body can be represented by the shape of a
circular cylinder with radius 0.15m and height 2m.

As testbed for the evaluation, a 80m2 apartment room was chosen. 2 APs were placed
and measurements at 11 locations were collected. At each location, 60 measurement
samples were taken and subsequently averaged. A RPE of 3.2dBm and RMS-RPE
of 4dBm is reported on this environment.

Another advanced 3D-Raytracer model with a 2D fallback mode is presented in
thesis of Martin Klepal [15]. The engine simulates the optical effects of reflection,
refraction and diffraction. Non-isotropic radiation patterns for the antenna model
are also supported. The scene geometry is represented by a voxel space with a
voxel edge size of 30cm for the 2GHz wave frequency. Multiple classes of materials
are supported by assigning them to the corresponding voxels. As in the presented
localization framework (i4lf), the material parameters are trained by optimization
with Genetic Algorithms. The optimization criterion, also called the fitness value,
is given by a minimization of a variance value which is also used during evaluation.
The author reports that the Conjugate Gradient and Hill Simplex optimization
algorithms have shown worse convergence behaviour with respect to the reached
optimum. The impact of the number of rays on quality of the simulation is also
analysed. The author concludes that using 0.3 - 2 Mio rays leads to a good AP
coverage estimation without artefacts due to undersaturated areas. This relates
nicely to the experience with the PHOTON raytracer where 0.3 Mio rays lead to
usable and 2 Mio to excellent results with respect to the amount of artefacts in
undersaturated areas.

An extensive performance evaluation was conducted on a single floor of 4 different
office style buildings. The floor area of all sites combined is around 5000m2. The
four different materials, that are used in all scenes, are given by: light wall, heavy
wall, windows, floor. Special care has been taken by collecting the measurements.
A wooden stick, that holds the device around 1m in front of the operator, was
used to minimize the body shadow effect. The number of measurement locations
and the corresponding number of received values that were probably averaged are
unfortunately not disclosed. The RMS-RPE is reported to be between 3.5 and
4.5dBm over the four scenes2 and corresponds to the PHOTON results as well.

2On page 84 of the thesis the author reports a computed mean and variance over the measure-
ment deltas without applying the abs() function. This variance is a lower bound for the RMS-RPE.
Therefore, the RMS-RPE is assumed to be around 0.5dBm higher.

3.2. Positioning and Tracking 37

3.2 Positioning and Tracking

The following sections will present literature for the major algorithmic approaches
to the localization problem under the restriction of AP generated RSSI readings.
An exception has been made for the related work about Particle Filters in 3.2.2.
Their indoor localization approaches seems to derive of use-cases from the field
of robot navigation and have therefore been historically adapted to other sensor
types. The presented radio propagation dependent localization systems use the RSSI
information in an active way. This means, a mobile device is actively sensing for
the information. Recent research has also been conducted on the passive approach
that is given by measuring fluctuations in the radio propagation with stationary
device. Such a method was proposed in [32] and has the advantage to drop the need
for special equipment at the mobile localization target in the form of some Wi-Fi-
receiver. With exception of the presented system in [13], described in section 3.2.3,
all RSSI based systems use a single device for measurements. In [13], three devices
are used synchronously.

3.2.1 Hidden Markov Models

In this section, three HMM based localization systems and their evaluation result are
presented. The focus is placed on the following model properties and environment
configurations that are used for the evaluation aspect:

1. What radio propagation model was employed? Are different materials param-
eters distinguished if it is an analytical one?

2. How are is the PDFs of the emission probabilities p(x|s) modelled and by
which means are they obtained from the radio propagation model?

3. How are the discrete PDFs of the transition probabilities p(s|s′) modelled?

4. What is the rasterization ratio of the environment that determines the area or
volume that is covered by a state?

5. How many predecessor states are evaluated and finally stored for backtracking
to the best state sequence sT1 ?

6. How was the radio propagation model configured for evaluation? How many
material parameters were used. How was the model obtained if it is an empir-
ical one?

7. What is the size of the scene, and how are the LOS/NLOS conditions. How
many APs were used?

8. What was the evaluation corpus of tracked paths and what is the reported
error.

The first HMM based pedestrian localization system, that is analysed here, is re-
ported in [25]. For the radio propagation model an empirical model is used that

38 3. Related Work

is constructed by collecting indoor and outdoor measurements. Additionally to the
stored RSSI information, sensor readings of the acceleration and from a compass
are also available to the system. The database with the collected measurements was
interpolated to obtain the emission probabilities p(x|s) at all states s representing
2D locations on a grid. The database contains mean and variance information that
is used to model p(x|s) as Gaussian distributed. The evaluation of this probability
for a measurement x contains a smoothing step that is conducted by integrating over
the [−0.5dBm..0.5dBm] interval around the measured RSSI value. The transition
probabilities p(s|s′) are modelled variably and depend on the sensor readings of the
accelerometer and the compass by using dead reckoning. All states are possible pre-
decessor states leading to a computational complexity of T cdotS2 during the Viterbi
Decoding. Finally it is a first order Markov model, as only the direct predecessors
influence the decision process.

An evaluation of the performance of the HMM localizer on synthetic data was con-
ducted. The synthetic RSSI data is generated by assuming a radio propagation
model with simple log-normal fading and combining it with white Gaussian noise of
6dBm. The scene is a 2500m2 square area with full LOS conditions. Furthermore,
additional synthetic noisy accelerometer and compass information was added to the
setup. The state space contains 2500 states with edge size 1mx1m. 9 APs were
evenly distributed. This environment leads to an offline LE of around 2m for a not
exactly specified sequence of 105 measurements.

Additionally an evaluation on two real world scenes was conducted. The propagation
model is obtained from previously collected measurements in both cases. Both cases
have an unknown number of APs and an unknown rasterization for the state space.
The measurements of the three mentioned sensors were taken with a HTC Hero
Android smartphone. The first scene is a Christmas market with area of around
2500m2 at a time of the day where nearly no visitors lead to destructive body shadow.
Due to the many small tourist shops at the market, there are high NLOS conditions.
For this outdoor scene an offline averaged LE was evaluated on an unclear number
of measured signals. The second scene is a combination of an indoor and outdoor
area of around 1200m2. An offline LE of around 2m for the indoor, and 5m for the
outdoor part is determined. The combined LE on all 2300 measurements is given
by 4m.

Another HMM based localization system is presented in [27]. An analytical radio
propagation model was employed that is based on a multi material WAF model. The
emission probabilities p(x|s) are obtained from the WAF model that is enhanced by
assuming that attenuation factors are modelled as Gaussians. The noise at the
receiver side is also modelled as a Gaussian. Both PDFs are combined to form the
final p(x|s). As in [25], the computation of p(x|s) for an instance of the RSSI vector
x is done by integrating over the [x− 0.5dBm..x+ 0.5dBm] interval. The transition
probabilities p(s|s′) are modelled by assuming two modes of operation. The first
mode is the movement mode which is detected by evaluating the variance from the
last 10 measurements. If the variance exceeds a preconfigured threshold, this mode
is assumed to be given. The other mode can be evidently called non-movement
mode. The mode configures the maximum walking speed that is used to determine
the possible transition origins s′ for the current state s. As p(s|s′) is modelled as a
rasterized Gaussian, the maximum walking speed is projected onto the variance. All

3.2. Positioning and Tracking 39

states are possible predecessor states although most of them will have a p(s|s′) = 0,
depending on the mode controlled variance. Also, it is a HMM of first order.

The evaluation was conducted on an indoor office style scene with an area of 600m2.
The WAF model is configured with 6 different material coefficients. 3 APs were
placed to lead to NLOS conditions at the evaluation site. The 2D grid resolution of
0.5mx0.5m leads to a state space with cardinality 2400. An averaged LE of around
3m for this setup is reported3.

The HMM based localization system reported in [16] also uses a variant of the WAF
model, dubbed RSSI delay profile, for simulating the radio propagation. Similar to
[27] the variance of the emission probabilities p(x|s) is influenced by assumed noise
on the attenuation factors. For the transition probabilities p(s|s′), different discrete
two-dimensional PDFs are possible. All states are possible predecessor states. It is
a first order Markov model.

Synthetic measurements were generated with the WAF model for an office like scene
with an area of 1200m2. The noise level of the sythetic data, given by different
variances, should represent natural conditions. 4 APs were evenly placed to form a
square. p(s|s’) is modelled as a conic shaped two-dimensional PDF with maximum
probability at p(s|s) that is rapidly decreasing with increasing distance. On this
setup, a RMSE-LE of 5m is reported.

3.2.2 Particle Filters

Particle Filters (PF) are one of the most recent approaches to indoor localization.
Historically, they originate from the field of localization for robotics. In this context,
they have the typical sensor information of vehicles in the form of speed available.
Two of the presented implementations can use the information of the step length and
the step heading and/or RSSI readings for pedestrian navigation. The techniques
to process this additional information source in the PF approach seems to originate
in the research of robot navigation.

Four implementations will be presented by focusing on the following properties:

1. What is the available information source? If its a radio propagation model,
what is the type of it?

2. How is the environment modelled, is it a 2D or 3D model?

3. How is the weighting of the particles defined? How is the state-conditional,
the emission probability p(x|s) applied?

4. How are the transitions p(s|s′) modelled and how are they used during the
sampling of new particles?

5. How is the problem of sample impoverishment handled?

6. On what scene was the evaluation conducted, how many particles were used
and what error rates were reached?

3The value is derived from the CDF plot as only a median of 2m is reported and there seem to
be a large number of outliers in range of > 8m

40 3. Related Work

A PF for pedestrians, targeted to support rescue operations, that uses only footstep
sensor reading is presented in [29]. The sensor reports a step length, fused from an
accelerometer and a step heading that is derived from a compass. The environment is
2D based and constrained by information from 2D indoor/outdoor floor plans. The
weighting of the particles is handled by a simple zero weight if the particle has crossed
a wall and constant otherwise. The transition probabilities are derived from the step
heading and step length information and are combined with white Gaussian noise.
Therefore, a directional sampling of new particles, comparable to dead reckoning
constraints, is employed. The PF was enhanced by an interesting approach to sample
impoverishment problem. The basic idea is to track the history of the particles by
storing links between the new and the source particles. Therefore, each generation
of particles is stored as well. Now, if the degradation of the current generation is
detected by a drop in the combined weight of all particles, the particles are traced
back into the older sample generations and the source particles of the currently
”bad” particles are replaced by new samples. From these ”corrected” generations the
sampling process is restarted.

The evaluation was conducted on an 2700m2 indoor/otdoor scene. A tablet PC,
processing the information of XSens MTi motion sensor, was used as the mobile
device. Map constraints from a detailed 2D-map were available. 2000 Particles are
used. The averaged LE is given by 1.5m for the basic PF implementation and an even
better 1.3m for the variant that escapes sample impoverishment with backtracking

Another PF, that uses the same footstep sensor as the major information source,
is presented in [31]. The system does also employ RSSI measurements but, these
are only used for the initialization of the particles. The particles are not uniformly
displaced over the environment, they are constrained by a rough approximation of
the probable localization area. The used radio propagation model for this step is
a simple path-loss model without wall attenuation. The system has a notion of
the 3D-space for multi-level building by connecting the individual 2D floor maps at
junction points and enriching the 2D map polygons with height information. This
2.5D-map is used for rejecting trajectories that lead through impassable regions.
The sample spawning is driven by transition probabilities that are modelled similar
to [29]. The weighting of particles is also assumed to be zero if a wall is crossed. If it
is a valid particle, the weight will be determined by height information for the 2.5D
map and the height change that is additionally extracted from the footstep sensor.
The transitions are modelled equally to [31] and derive their parameters from the
step length/heading information.

The evaluation was conducted on a three floor office style building with a total area
of 8725m2 that is comparable to the UMIC scene. A hip mounted PC processes the
footstep data of a XSens Mtx IMU sensor. Over 6 walks with a duration of 16min
each, a very accurate RMS-LE of less than 0.7m is reported.

In [28], three different nonlinear filters: Fourier density approximation, a gridbased
filter and a PF are compared on an analytical and an empirical radio propagation
model for 2D scenes. The former analytical model is a multi material WAF model
and the latter a manual collected RSSI database. In the analytical case, the weight-
ing of a particle is derived from the output of the WAF model with noise from a
two-components Gaussian mixture with the two means of −7.5dBm and +7.5dBm.
In the empirical case, the stored RSSI are interpolated and used as means for the mix-

3.2. Positioning and Tracking 41

ture model. In both cases, the transition probabilities p(s|s′) are circular bended one
dimensional Gaussians with mean 2.5 and variance 0.3 representing average move-
ment speed of 2.5m per sampling step. The problem of sample impoverishment on
the particles is not discussed.

An evaluation is conducted on synthetic data from the WAF model. The scene is an
office style floor with an area of around 1200m2. The WAF model is configured with
attenuation coefficients for three different materials. 6 APs are evenly distributed.
The emission probabilities are used to generate measurements for one reference path
with length 25m that visits three rooms in the scene. The reported offline LE is less
than 0.8m.

On the empirical radio propagation model an evaluation with real measurements was
conducted. 14 APs were evenly distributed in the same scene. On the same path as
above, the reported averaged offline LE is less than 1m. In both experiments 500
particles were used.

The last investigated implementation of a PF which uses RSSI readings can be
found in [5]. The propagation model is an empirical one and is described in [6]. The
weighting is based on emission probabilities that are Gaussians with a variance of
5dBm. The indoor environment is described in a 2D-map that is used to constrain
the movements during the particle sampling process. The transition probabilities
are further modified in crossway zones to reflect the higher probability to turn in
direction. Sample impoverishment is detected by a drop of the combined weights of
the particles and is compensated by feeding new uniformly distributed particles into
the system.

The evaluation is conducted on a rectangular indoor office scene with an area of
1600m2. An averaged LE of 1.9m is reached but the number of APs and the length
of the path were unfortunately not further defined.

3.2.3 Nearest Neighboor based Approaches

For completeness, an overview of localization systems that ignore the sequential
nature of the tracking problem or that are simply only designed for the positioning
problem, will be given. These systems use the Mean Squared Error (MSE) as the
distance measure between the received RSSI vector and the stored RSSI values for
a location. The location with the minimum MSE is selected as the most probable
location. Therefore, the employed technique is labeled Least Mean Squared Error
(LMSE) and was also derived in the background chapter 2.7.

A problem in the approach of LMSE is given by the result, that largely different
locations can have similar MSEs. As a reaction to this problem, enhanced LMSE-
based methods were developed. One of them is described in [18] as the so called
closeness elimination scheme. Another in [17] where the locations at the top smallest
MSEs are combined.

The system described in [8] evaluates a basic LMSE driven localizer that is based on
a raytracer generated progation model. The raytracer is configured with different
material coefficients that are taken directly from the literature. By using material
parameters from [30] the performance of the system is given by a RMS-LE of 2.28m

42 3. Related Work

for the positioning problem. The chosen scene for the experiments was a 130m2

small 3-room floor with three APs. The number of positioning attempts that were
evaluated is not documented.

Another framework, that is presented in [13], generalizes the LMSE selection crite-
rion to a clustering based approach. Of the two known clustering strategies k-means
clustering and hierarchical clustering, the former is reported to lead to better results.
The unknown initialization variable of the k-means strategy is given by the number
of target clusters. This number was determined empirically. Furthermore, the clus-
ter history is exploited without formalizing the model to the state space model of
Figure 2.11. The basic idea is given by rejecting clusters at the time frame t if the
best clusters of t− 1 are too far away. The reported averaged LE is given by 2.8m.
The contained tracking error is probably an online 2D-error with history constraints.

In [9] a simple localizer, based on the LMSE criterion, is used to test the quality
the radio propagation model that is generated by the sophisticated 3D-Raytracer
described in section 3.1.2 of this chapter. The evaluation of the localization algorithm
is performed by estimating the positions of 20 RSSI vectors that are collected for
each one of 11 predefined locations. No dependency between the 20 readings of
a single location is assumed. A pretty good LE of 1.61m is reported, although the
setting is only a smallish single-room scene of 80m2 with nearly no NLOS conditions.

3.3 Summary

The following observations were made during the evaluation of the presented litera-
ture. There is no defined set of rules for determining the quality of radio propagation
models or for comparing the performance of localization algorithms. Various error
measures are in use and sometimes the evaluation is conducted on unclear environ-
ment conditions. If needed, the presented errors have therefore been normalized to
the measures of this thesis, described in 2.1.3 and 2.3.2, for easier comparison. It
would be helpful, if the research community could agree on some common set of
principles that should be mandatory for the evaluation of both topics. For example,
it should be mandatory to report the number of used APs in an evaluation scene for
RSSI based localization algorithms. That was not always the case.

4
Design

This chapter introduces the different concepts that were needed for the realization of
the localization framework. The core components, their use cases and their individ-
ual relationships are presented. The various communication channels that connect
these components are described and the motivations for the individual architectural
decisions are explained.

4.1 General Overview

The localization framework is build around a central server instance that communi-
cates with different consumers for various purposes over HTTP. The different con-
sumers are composed of mobile devices, browsers, GPU-nodes and fat clients. The
different purposes for these communications are localization, measuring, evaluat-
ing of results and distributing computational hard problems. The Server combines
five major components for approaching the topics of this thesis. These components
consists of:

1. The Optimizer, the component responsible for training the radio propagation
model through searching for optimal material parameter solutions by compar-
ing raytracer results with a given set of initial measurements.

2. The Simulator distributes raytracing jobs to the available GPU-nodes and
collects the processing results. Either in the context of an Optimizer run or
for manual inspection of the radio propagation results for the different APs and
different material parameters in a debugging environment like the Fat Client.

3. The Localizer component represents the HMM and PF driven algorithms with
the associated environment needed for positioning and tracking of mobile de-
vices. Therefore, its also used by the Evaluator for evaluating offline recorded
measurements annotated with tracked positions.

44 4. Design

Figure 4.1 Highlevel overview over the localization framework showing the major
components, their relationships and the communication channels. The employed
communication protocol is always HTTP.

4. The Evaluator is a component that is needed for determining the different
errors that arise during the localization process. These errors are aggregated
over the collected corpus of paths and therefore used for evaluating the overall
system performance under different conditions.

5. The last component can informally be labelled General Infrastructure, as
it contains subcomponents suited for data-persistency or configurability, the
HTTP-Server, rendering engines and other required application infrastructure.

The primary communication channels between these various components and the
consumers are shown in Figure 4.1. Of available consumers there are:

1. The GPU-nodes for running a computational expensive radio propagation sim-
ulation with the PHOTON raytracer.

2. The devices, representing a class of Wi-Fi capable hardware like smartphones,
tablets, laptops other forms of mobile computing devices.

3. A Fat Client for debugging and evaluating the overall system performance and
the generated radio propagation models.

4. Different browsers, either on a desktop PC complementing the Fat Client for
debugging and evaluation, or on a device for the interaction with the localiza-
tion application.

4.2 Radio Propagation

The performance of the indoor localization system is strongly coupled with the ac-
curacy of the estimation of the signal strength for each AP at a given location.
Therefore, the first task is to obtain such a signal strength map by the means of
a radio propagation model. Instead of using an empirical propagation model that
requires extensive manual calibration via collecting measurements, the decision was,

4.2. Radio Propagation 45

to use the raytracer PHOTON for generating the SSMs. Although the raytracer en-
ables dynamical simulation of the radio propagation for freely placeable APs, there
are still some required prerequisites. Initially, a 3D model of the building is needed
that should preferably distinguish between materials with different physical proper-
ties. For each material, the optical parameters can then be either looked-up or they
need to be trained. In the context of this thesis, a method to train these parameters
was designed. The main motivation for these efforts was given by the circumstances
that although material parameters were found in [30], they were not directly ap-
plicable to the presented setup. It is also reasonable to assume that the properties
of the used materials in the UMIC building differ from the ones used in other ex-
periments. Furtermore, there exists no unified input format for different raytracers
in general and radio propagation simulators in particular. Although probably this
hurdle could be overcome by devising some adaptation scheme between different
material parameter representations.

4.2.1 Model

The raytracer model consists of a Blender generated 3D-Scene with multiple meshes
representing the walls, doors, windows and furniture of the building. Each mesh
has a defined material. For each material, there is a reflection parameter α and a
transparency parameter β. Additionally, a power parameter is defined that controls
the initial strength of the emitted signal for each AP class. APs of the same model
are grouped into such an AP class. With α and β as material parameters, the
raytracer uses the following BRDF that is described in 2.1.1 for simulating the
intersection between rays and materials. Refraction, diffraction and interference are
not simulated by the basic BRDF and there is no change of the direction of the
ray that passes through the material. For simplicity, the emission of the signal of
an AP is assumed to be isotropic. It is possible to employ more complex antenna
patters that are based on spherical harmonics. But that would lead to more free,
and therefore trainable, parameters instead of the chosen representation by a single
scalar power parameter for a class of APs.

The raytracer was successfully employed to simulate the radio propagation of GSM-
stations in outdoor scenarios. So it is reasonable to assume, that indoor scenarios can
probably be simulated successfully as well. The raytracer is GPU-accelerated and
simulates a scene of 3000m2 over three Floors in a resolution of two megavoxels and
with 106 Rays in around 30 seconds on a NVIDIA QUADRO 6000. Therefore, the
raytracer produces SSMs with a voxel size of (20cm, 20cm, 20cm). For each AP with
a given position and power class such a signal strength map is generated. During
evaluation, these maps have to be generated only once given appropriate material
parameters for the scene and power/location parameters for the APs. Hence, it is
very cheap to adapt the propagation model to a new AP configuration.

4.2.2 Parameter Estimation

For training the free parameters of the raytracer model, the implemented system
uses measurements that are collected with Wi-Fi capable devices at predefined po-
sitions in the building. After this initialization phase, an evolutionary optimization

46 4. Design

process is used to find the parameter combination that minimizes the aggregated
error between the propagation simulation result and the collected measurements.

4.2.2.1 Initialization

The measurements of the signal strength for the individual APs are either collected
by using the mobile devices that should be used as localization targets later or
by some special hardware like the WISPY spectrum analyzer1. The measurements
are generated by reading the device specific Wi-Fi-APIs and then transmitted over
HTTP to the server instance. There, they are stored for each device separately to
retain the possibility to adapt for possible device specific distortions.

Since the readings of all APs can be measured parallel at each location, the proce-
dure is not time consuming. In the UMIC scenario measuring for 30 seconds at 60
locations has been shown sufficient for running the parameter optimization.

4.2.2.2 Optimization

The parameter optimization is driven by a genetic algorithm on the Optimizer com-
ponent. A set of free parameters constitute an organism in the context of the genetic
algorithm. The fitness of an organism is evaluated by running raytracer simulations
for all APs over the geometry of the scene with the corresponding parameters of
that organism. This can be a time consuming task since a representative raytracer
simulation needs more than 30 seconds on a current GPU/CPU and convergence of
the cost function is reached by evaluating at least 3000 organisms. In the analysed
UMIC scenario with 22 APs, this leads to a serial processing duration of around
22 days. Through exploiting the parallelizability in the cost/fitness function and
the parallel nature of the breeding phase, the duration of such an optimization run
can be reduced nearly linearly, as long as Ngpus << Npop × Naps, by employing
GPU-nodes. These nodes are accessed through the Simulator component that will
distribute them accordingly.

The nodes are designed as lightweight processes that are hard wired to run the
PHOTON raytracer and execute some job specific code on the results before pushing
them back to the Simulator component. The job specific code is transferred with
the job package to the node. This allows to bring new types of jobs into the system
by only updating the Server deployment. The security risk imposed by transferring
the executed result inspection code over HTTP, should be minor as the nodes pull
the jobs from a single preconfigured host. The design of the system can easily
be extended to allow automatic spawning of nodes but no real efforts have been
undertaken in that direction.

The motivation for choosing such an approach was given by the circumstances that
during the duration of this thesis the RWTH had deployed a new GPU-Cluster
consisting of around 50 NVIDIA QUADRO 6000 nodes. By using these resources
a full optimizing run containing 30000 simulations with a duration of 30 sec each,

1Although measurements with the WISPY were taken with the goal to derive the free raytracer
parameters, the evaluation of the results were inconclusive and have thus been removed from the
scope of this thesis.

4.2. Radio Propagation 47

Figure 4.2 Schematics for decentralized parameter training on cluster. The main
loop of an optimization iteration is emphasized with fat green lines and consists of
interactions between the Optimizer, the Simulator and the GPU-nodes on the cluster.
Attached is also the data flow for the initialization phase when measurements of
different devices at different locations are collected in an indoor scenario.

completes overnight instead after multiple weeks. Without these resources, one
would have to sacrifice either resolution at the raytracer level by decreasing the
number of simulated rays or reduce the number of included APs. It can be expected,
that the prepared infrastructure will also be useful during training of the localization
models 2.

With the described mechanics, evaluating a population of organisms leads to spawn-
ing of Npop×Naps jobs that are pulled by scripted worker GPU-nodes, located in the
cluster, over HTTP. A job is defined by a set of material parameters, a set of power
parameters for each AP class, a 3D-model and a list of locations in the 3D-scene.
The worker node executes the raytracer with the given input data and evaluates the
resulting SSM at the defined locations. The list of RSSI values of each location is
pushed back as a result for a given job-ID to the optimizer. If all jobs, the results
of the individual APs, of an organism are available to the Optimizer, the fitness of
the organism is calculated by using the RPE as a measure. The Optimizer tracks
the organism with the best fitness, so that if a new optimum is reached, the system
stores the parameter set for later use. Convergence is assumed, if either a predefined
generation count is reached or the change of fitness between two successive optima
is less than 1 percent of the absolute fitness value.

4.2.3 Device Specific Adaptation

Although the scale of the measured RSSI readings over the different devices can be
interpreted as a dBm value which represents the dampening of the emitted signal,
these readings are not normalized over device specific properties like deviations in the

2But as the computational requirements of the tracking algorithms can be handled by a modern
multicore CPU and no real big training corpus of tracked measurements was available this has not
been fully explored.

48 4. Design

antenna gain. Thus, the possibility was introduced to adapt or normalize over these
properties with some function that accepts raw RSSI values as input and results in
normalized RSSI values for output. The configuration of this function can be learned
during the optimization process or alternatively later in a postprocessing step with
an optimization algorithm that compares device specific measurements to the radio
propagation results.

Since such an adaptation is device specific, a prerequisite for the optimization is the
availability of separate measurements with known locations for each device or at least
for each different device class that share a similar hardware configuration. Instead
of using manual collected and therefore costly measurements, it can also be possible
to extract these location annotated measurements from the localization results of an
accurately working system. Such a system needs a form of confidence measure for
distinguishing between good and bad localization results and is exemplary for the
method of reinforced learning.

If individual Device Specific Adaptation is not used due to the presented limitations,
a simple global adaptation of the raytracer results is applied. The simple adaptation
is a mapping of simulated RSSI values that are smaller than −100dbm into the range
−100dbm to −90dbm since all evaluated devices share −100dbm as an upper limit
for reported RSSI readings.

4.3 Positioning and Tracking

It has been explained in the background chapter that positioning and tracking can
use the same set of algorithms, since the former is understood as a special case of
the latter. Both work on a sequence of measurements that collapses to a single mea-
surements at the start of a positioning or tracking attempt. Although it is possible
to differentiate between the two cases if additionally sensorial input from the devices
could be delivered, for example in the form of acceleration information3, this was
not evaluated in this thesis. Therefore, both use-cases employ the same component,
referred to as Localizer, see context in figure 4.1, in an identical configuration for
solving the associated localization problem.

The core of the localization system employs the chosen algorithmic backend that is
given either in the form of a Viterbi Decoder for the HMM based approach or the
sampling algorithms for the PF. The Viterbi Decoder processes prepared sequences
of RSSI readings by executing the Viterbi Algorithm on a HMM. The emission and
transition probabilities are parametrized with data managed by the Environment
component. The same principles are used to drive and configure the PF algorithms.

The RSSI readings for all available APs are collected at each device by querying
the local Wi-Fi-APIs in a configurable interval and pushing them to the Server by
using the Webservice-API. The Server collects these RSSI readings as a sequence of
measurements that are further normalized in a signal preprocessing step (see figure
4.4) before fed into the Viterbi Decoder for the HMM model or into the PF decoder.

3It would be reasonable to expect that such information could be used for manipulating the
transition probabilities. In the simplest case that means distinguishing between moving and stand-
ing.

4.3. Positioning and Tracking 49

Figure 4.3 Overview over the different subcomponents of the Localizer and the
interactions with the devices. The Localizer can either use a HMM, a PF or LMSE
for the core algorithmics.

Collecting measurements and evaluating them has been done asynchronously during
evaluation of the system. This means, that the measurement sequences were stored
to form an evaluation corpus that was afterwards analysed. In the online tracking
mode, the measurements are synchronously processed and the incrementally reported
sequence of locations is temporarily stored. The devices will pull their corresponding
localization result by accessing the Webservice-API and visualize them in a browser.

4.3.1 Hidden Markov Model

The localization problem under the HMM approach is given by finding the most likely
sequence of hidden states in a HMM for the observed sequence of measurement. A
hidden state of the HMM represents the unknown location of the device for a given
time frame. The observed emission of such a state is given by a set of RSSI readings
for that time frame.

There are a large number of possible location sequences. If the number of measure-
ments is given by T and the number of possible locations or hidden states is given by
S then there are ST possible location sequences that are possible localization results.
At the utilized raytracer resolution in the UMIC scene with a voxel size of 20cm,
the rasterization of the 3D-space leads to 2 · 106 Voxels that represent the maximum
resolution of the hidden state space . So with T = 10, this leads to around 1063 pos-
sible localization results. The number of hidden states can be reduced by combining
them into larger cubes leading to a state space with a lower resolution. This can be
done by combining a number of adjacent voxels for each dimension to a hidden state
with a larger edge size. But a brute force search for the most likely sequence of 10
hidden states combined of 3 voxels with an edge size of 60cm still needs to inspect
1048 candidate sequences. And that remains an intractable computational problem.

Therefore, the problem is reduced to a first-order Markov Model and the Viterbi
algorithm is utilized for finding the most probable state sequence efficiently. By
using a first-order Markov Model the Viterbi algorithm processes S states for each

50 4. Design

time frame t ∈ T . At each state st all possible predecessor states are visited. It is
reasonable to limit the number of possible predecessor states to the surrounding area
of a given state. So by restricting the transitions between states to the neighbour-
hood of the next two states in both horizontal directions and the next state in the
vertical direction this leads to 75 predecessor states and is called a (5, 5, 3) transition
model. These constraints limit the number of needed computations to the tractable
polynomial complexity of 75 ·T ·S. In the UMIC scene, around 60k states with edge
size of 60cm are defined. Thus, a sequence of T = 10 measurements leads to 45 · 106

needed computations, that are processed very quickly, as the implemented decoder
is able to compute 5 · 106 states per second on an Intel i7-QuadCore@3Ghz.

4.3.1.1 Parameter Estimation

The parameters of the HMM, that are evaluated by the Viterbi Decoder component,
are given by the emission- and transition probabilities. These parameters are esti-
mated during a training phase and are cached in the Environment component. The
default HMM parameter training method is given by the Baum–Welch algorithm.
But for such a training, a corpus of location annotated RSSI readings is needed.
That corpus needs to contain training data for all possible states, representing lo-
cations in the 3D-space, so that the practicality of this approach can be excluded.
Therefore, the parameters of both probabilities are acquired from other sources.

The combined SSMs over all APs is understood as a generative model for the emission
probabilities thus these parameters can be obtained easily. But for the transition
probabilities, no such convenient data source is at hand. The only available source
of information, which can be exploited for modelling constraints on the movement
between states in the 3D-space, is the 3D-model that is already used for driving
the raytracer. At least the most critical information for modelling the transitions,
the restriction which states are impassable due to blocking material, are retrieved
from the building structure. Incorporating such knowledge is used to reject path
hypothesis that move through walls, floors or other forbidden zones.

4.3.1.2 Emission Probabilities

The model parameters for the emission probabilities p(s|x) are obtained from the
stored radio propagation Models. In the UMIC scenario a hidden state is config-
ured to represent the neighbourhood of 3 adjacent voxels for each dimension. The
emission probability is modelled as a multivariate Gaussian with a constant pooled
covariance matrix Σ = I. TheNaps-dimensional mean vector for p(s|x) is obtained by
calculating the arithmetic mean of the RSSI values from the 27-voxel-neighbourhood
for each AP dimension. Although the variance of these voxel-neighbourhoods can
be calculated this does not represent any conclusive information source. The real
variance of the received RSSI values is driven by multiple effects like multipath
propagation, body shadowing and other probably location dependant noise. None
of these effects are captured in the radio propagation model4, so the model drops
the variance altogether. By transforming the Gaussians with Σ = I into logspace,

4Simulating the effect of multipath radio propagation on the variance could be enabled by the
possibility to dissect the raytracer results into the different recursion depths that are triggered for

4.3. Positioning and Tracking 51

Figure 4.4 Signal preprocessing recovers missing signal components (marked as
green circles) by using information from adjacent signals and injects the needed
additional interpolated signal vectors (grey) to allow a maximum walking speed of
3ms−1 under the constraints of the (5, 5, 3) model.

as described in 2.5.4, the task of the Viterbi Decoder to evaluate p(s|x) becomes a
simple euclidean distance5 calculation between the stored mean vector and an input
RSSI vector.

Special attention is given to the problem of missing signals in the input vector.
Although signal preprocessing mitigates this problem by interpolation of missing AP
components in the sequence of measurement vectors (see figure 4.4), there can still be
missing AP components at the head or the tail of the sequence. If missing signals are
simply adjusted to a value of −100dbm this leads to undesirable high deltas during
the distance calculation for the neighbouring states of the correct location. There, in
the case of a missing signal, the corresponding AP values are larger than −100dbm.
With larger simulated RSSI values for such an AP at these states, the effect becomes
stronger. The states near the correct location get an artificially elevated distance
and are in a sense ”pushed away”. Empirical investigations have lead to the best
results by fully skipping the component, although assigning a distance of zero seems
to be a form of inappropriate reward for this case.

4.3.1.3 Transition Probabilities

The transition probabilities p(s|s′) are the key instruments for modelling the sequen-
tial nature of the input signal. They have a discrete probability distribution that is
stored in a large table containing number of states times the number of transitions
entries. The model ensures that the normalization constraints of the discrete PDF
given by

∑
s∈S p(s) = 1 and

∑
s′∈S(5,5,3)

p(s|s′) = p(s) are satisfied. Furthermore, the

probability mass of p(s) is divided evenly over the three jump widths. One third is
reserved for the 0-jump and the other two thirds are given to the 1- and 2-jump.

every material intersection. Overlapping signal information of different recursion depths could then
be interpreted as a result of multipath radio propagation.

5The Viterbi Decoder can also be configured to use other distance functions. Pretty much
equivalent results in terms of errors were archived with the computational less expensive manhat-
tan distance (l1-norm) restricted to the max 3 signal deltas. The restriction to the top 3 deltas
anticipates the greater weight of component distances of lp-norms with p > 1

52 4. Design

Therefore, all three jumps are equal probable. If additional sensory acceleration
information become available in a future upgrade of the system, these jumps can be
differently weighted.

The first take on the sequential nature of the problem, is made implicitly by choosing
the (5, 5, 3)-transition-model. This can be interpreted as setting p(s|s′) = 0 for all s′

that are not included in the (5, 5, 3) neighbourhood, effectively forcing the resulting
path hypothesis to resemble a chain of locations that skips at most one state. The
modelled jump width of (0, 1, 2) is the classical approach to allow a time alignment
of the received emissions to the hidden states. In other terms, the model can adapt
to different speeds of movement. Standing at a position, is by that reason modelled
as a series of 0-transitions, whereas faster movement leads to series of transitions
with a higher probability of skipping states by using a jump width of 2.

By utilizing the (5, 5, 3)-model, a maximum movement speed is also introduced. Two
consecutive signal vectors are only mapped to states that are at most 1.2m away
assuming a states represents a cube with edge size 0.6m. So in the case of gaps
in the received data stream, accompanied by movements exceeding such distance
thresholds, the model will not be able to compensate. Therefore, the sequence of
measurements is interpolated to ensure, that there are enough time frames t to
cover a distance that is needed by an assumed maximum walking speed of 3ms−1

(see figure 4.4). Instead of such seemingly artificial restrictions it would alternatively
be possible to increase the maximum jump width by employing a (7, 7, 7)- or even
larger model. But since this leads to a cubic increase in the number of allowed
and therefore processable transitions for each state, this is computational expensive.
Thus, the chosen (5, 5, 3)-model seems to be a good compromise between adaptivity
and computational efforts.

The limitation of the maximum jump width to 1 in the vertical direction reduces the
number of allowed transitions from 125 to 75 and is justified with the observation,
that natural walking movements are primarily in the horizontal 2D-plane. The
remaining adaptivity in the vertical dimension has proven to suffice for handling
tracks containing significant parts of stairway zones6.

The next source of information that is exploited to adjust p(s|s′) for the remaining
transitions defined by the (5, 5, 3)-model is the 3D-Scene. If the 3D-cube, represented
by either s or s′, intersects with a face of a 3D-object that has a material flagged as
blocking, then p(s|s′) = 0. For transitions with a jump width of two, it is additionally
checked if there exists an unblocked path of at most two steps between the source
and the destination state of the jump. If this is not the case, then p(s|s′) = 0. This
removes the possibility to jump over blocked cubes. See example 5 in figure 4.5.

If one of the both states is more than 2m above cubes with blocking material,
then p(s|s′) = 0. This removes the possibility to fly. And the last condition for
p(s|s′) = 0 is given by states, that are located above cubes containing material
flagged as impassable. This removes the possibility to walk over furniture like tables
but only if the 3D-model exhibits detail at this level.

After applying these constraints, the probability mass for the transitions will then
be evenly distributed over all p(s|s′) 6= 0. This results in an already reasonable

6Although the author guesses that using the elevator that is present in the UMIC scene, will
probably break this approach.

4.3. Positioning and Tracking 53

Figure 4.5 Different cases for p(s|s′) at the junction point of a pathway: 1) 0-jump

with constant p(s|s′) = p(s)
3

. 2) Elevated p(s|s′) due to long line of sight. 3) Medium
line of sight. 4) Reduced p(s|s′) due to short line of sight. 5) p(s|s′) = 0 due to
blocking material.

performing model that excludes most of the invalid path hypothesis and complies
with the patterns of natural walking.

The last approach to fine tune the transition model, is given by adjusting p(s|s′)
to the length of the line of sight in the direction defined by the jump from s to s′.
More free space in jump direction leads to elevated p(s|s′) whereas less free space,
i.e. standing before a wall, gives a penalty on p(s|s′). Employing this technique
supports the natural moving direction in long pathways at the cost of paths that
lead directly before furniture or tables. See examples 2, 3 and 4 in figure 4.5.

4.3.1.4 Pruning

The viterbi algorithm is made more efficient by pruning unlikely hypothesis from the
search space. This is motivated by the observation, that a lot of the intermediate
hypothesis have a very low probability as they are terminal states of paths that are
far away from the real position. This induces a large number of mismatching RSS
readings leading to very low emission probabilities. A problem, that can arise by
removing unlikely hypothesis from the search space, is encountered if the pruning
is to aggressive and removes hypothesis that are unlikely in the some time frame
t but will become later the most probable. In this case, the best hypothesis, the
best matching path to the measurements, is not found and the quality of the result
degrades. It was sufficient to retain only the top 6% hypothesis of the search space,
which are around 3000 in the UMIC scene, without loosing relevant hypothesis.
Although the parallelizability of the Viterbi Algorithm is negatively affected, as
there is more shared data needed, leading to more critical sections, a speedup of
around factor 10 is archived.

A crucial data structure for an efficient implementation of the pruning viterbi decoder
is a skiplist (William Pugh, 1990), which is needed to keep track of the top N
hypothesis during the evaluation of a time frame. The skiplist represents a list of
permanently sorted items, here the top hypothesis, with insertion cost of O(log(n))
during decoding. Although the data structure can be implemented to allow for

54 4. Design

Figure 4.6 Top 300 unpruned states at the beginning of a location tracked mea-
surement run visualized by the white cross symbols. The path starts on the first
floor and ends on the ground floor by passing the stairways.

concurrent unlocked insertions this has not been done in the presented decoder due
to time constraints.

Figure 4.7 Distribution of 500 unpruned from 66000 total States raveled into one
dimension over all timeframes of a decoding run. Darker areas indicate more un-
pruned states that have to be processed at the corresponding 3D location.

The addition of pruning to the Viterbi Decoder makes it feasible to decode a se-
quence of measurements in real-time on a resolution of 0.20cm leading to 2 · 106

states on commodity hardware. Although only a third of this resolution (0.60cm
leading to only 1

27
· 2 · 106 states due to the cubic nature of the problem) was em-

ployed on the designed models, as further detail has not yet brought any better
evaluation results, having such a computational reserve is promising. Especially, if
possible enhancements like further complex models such as HMMs of higher order
are assumed. Introducing for example second order HMMs leads to an expansion
of the search space by the number of possible transitions, therefore also to a speed
reduction of factor 75 with the chosen (5, 5, 3) model. It is expected, that this is still
computational tractable on current hardware.

4.3. Positioning and Tracking 55

4.3.1.5 Result Sequence

The Viterbi Decoder can return three different result sequences. The first is the best
sequence sT1 for all given measurements xT1 . This sequence represents the result of
an offline run. Furthermore, the algorithm returns the sequence containing the best
state hypothesis st for a time frame t during the viterbi decoding and represents
the results of an online run. By averaging the position over the top N location
hypothesis for a time frame t, the third result sequence sT1 is defined and called the
averaged online result. The offline sT1 has a higher probability of correctness than
the online variants since the latter has less information to rely on, as the future
measurements are excluded.

4.3.2 Particle Filter

The localization problem can also be approached by modelling the states as contin-
uous variables in the state space model (Figure 2.11). Such an approach is given by
the Particle Filter. As in the HMM approach, the most likely sequence of states sT1
for an observed measurement sequence xT1 has to be found. But instead of searching
this sequence by efficiently enumerating and evaluating the possible hypotheses, the
sequence is generated by an iterative sampling process.

Although a basic assumption of the PF are continuous states, the system maps
them into a discrete voxel space. Therefore, most of the data-structures from the
HMM design can be reused. Voxels with 40cm edge size have shown to represent a
resolution for reaching optimal results.

4.3.2.1 Emission Probabilities

The parameters of the emission probabilities p(x|s) are similar to the HMM design.
p(x|s) is a Gaussian with a mean vector that is extracted from the radio propagation
models by averaging over the RSSI values of corresponding voxel groups. The PF
does not use the simplified logspace approach of the HMM model, and does therefore
not reduce the emission probabilities to distance based cost values. The full gaussian
is evaluated and a signal variance of 5dBm has been empirically determined to
lead to good results. Missing components of the input signal vector xt have been
interpolated from neighbouring signals as described in the related HMM chapter
4.3.1.2.

4.3.2.2 Transition Probabilities

The transition probability p(s|s′) is modelled as a multivariate zero-mean Gaussian
with independent components. Three dimensions of the Gaussian represent the three
axis in free space. The variance of the horizontal components has been set to 5m and
the variance of the vertical axis to 2m. The reduced variability in the vertical axis
can be justified by the lower probability to move in that direction. Both values have
been empirically determined by testing the PF on location annotated measurements.

56 4. Design

Figure 4.8 Scene geometry restricted sampling of the transition probability p(s|s′)
during the driving process of a Particle Filter. Here, 1000 valid destination states
s were generated after 2184 trial samplings. The mean of the Gaussian, the source
state s′, is located at the red voxel.

As in the HMM approach, the information of blocked zones can be derived from the
3D-scene. During the sampling phase of the Particle Filter, the candidate samples
s, that are either in blocked zones or have blocked voxels on the straight path to
the source state s′, are rejected. A result of this sampling process on a crossing is
visualized at Figure 4.8.

105 samples are generated for each iteration of the driving process representing
a single time frame. Further increasing this number has not shown to have any
positive influence on the error rate of the PF. This relates to around 1 samples for
each m3 during the initial uniform displacement on the 8900m3 volume of the UMIC
scene. The samples are drawn in a round-robin scheme from a pre-calculated pool of
Gaussian values. Since the constraints of the 3D-scene lead to rejections of samples,
and therefore a resampling from the pool, a hard limit on the number of resamplings
has been imposed. Thus, the algorithm is able to proceed timely in pathological
cases where most samples are rejected.

4.3.2.3 Sample Impoverishment

A problem that arises in the PF algorithm is the degeneration of the current set of
states into a region of space that has no sufficient probable connection to the real
location. The process is stuck in that mispredicted region and cannot recover to the
true region by moving through the sampling process. This does especially occur in
the presented PF, if the 3D-scene restrictions are applied. A problematic zone is
given by the stairways where the possible path has the form of a corkscrew. If the
sampling process ”misses” the path trough the stairs, when the device moves from
one floor to another, the degeneration case is imminent.

4.4. Devices 57

The case is detected by a drop of the combined emission probabilities
∑
p(x|s) of

all samples by several orders of magnitude. This sum is always available, as it is
used for the weight renormalization described in 2.6.2. A possible strategy to resolve
this situation is given by feeding new uniformly distributed particles into the state
space. Another strategy that works well on the presented system is given by simply
deactivating temporarily the geometry constraints. After recovery of

∑
p(x|s), the

constraints will then be reactivated.

4.3.2.4 Result Sequence

The Particle Filter returns three different result sequences. As for the HMM Viterbi
Decoder, the first sequence sT1 evaluates all xT1 and represents an offline run. This
sequence is reconstructed after processing all T time frames that uses information
stored in a backtracking table. This table stores for each time frame t and each
state s the state s′ that was responsible for spawing s. The best sT is used as the
starting state to reconstruct the sequence by iteratively following the state linking
backwards.

The second sequence sT1 that is returned, is given by the particles that have the
highest emission probability p(xt|st) for each time frame t. As in the HMM ap-
proach, this stands for an online result as it does not depend on the remaining
future measurements xt+{1..T−t}.

The third sequence sT1 is also an online result but it contains the locations that
are the geometric means of the top N particles ordered by p(xt|st). The averaging
is more expensive since a sorted representation of the particles is needed. But by
utilizing the skiplist data-structure, that is used also in the HMM pruning technique,
described in 4.3.1.4, keeping track of the best particles is performed efficiently. This
result sequence leads to lower localization errors than the non-averaged variant.

4.4 Devices

No special attention is given to design of the device software. After starting the
localization service, it enters a simple loop that pushes the last RSSI readings over
HTTP to the Server. For reading RSSI values from the available Wi-Fi-APIs, the
service chooses a device specific implementation. Currently two such implementa-
tions exists, one for linux/libpcap based devices and another one for android based
devices. Localization results can then be analysed with a browser to fetch various
reporting and visualization pages from the server.

4.5 Fat Client

The Fat Client is used for debugging and evaluating the different aspects of the local-
ization framework. It is build on a GUI toolkit that embeds the VTK - Visualization
ToolKit for analysing 3D-data from different sources. Furthermore, the Fat Client
embeds an interactive scripting environment in the form of a Python interpreter for

58 4. Design

Figure 4.9 Localization result of a tracked path visualized with the VTK 3D-engine
that is used in the Fat Client. The path start in the center of the first floor and ends
somewhat right on the ground floor. At the end of the path the localization errors
are up to 5m.

inspecting the various properties of the models during runtime. Starting with the
initialization phase, the Fat Client receives all needed configuration data for a scene
from the server over HTTP. The configuration contains:

1. 3D-geometry of the building in form of a .obj-file.

2. Positions and associated information of all APs.

3. The location of the measurement points and the collected measurements from
the different devices.

4. A corpus of location annotated measurements, also called tracked paths, for
evaluation of the localizer performance.

5. A list of the optimization runs containing material parameters trained on the
cluster nodes.

With an initialized system, the user gets the ability to select a raytracer configuration
and the material parameters of an optimization run to request the simulation of
radio propagation models from the Server. The Server distributes these requested
jobs over the cluster nodes and receives all simulation results that are then further
redistributed to the Fat Client. This makes the Fat Client independent of a local
CUDA environment that is needed for running the GPU-driven raytracer.

With available radio propagation models for each AP, the localization engine is
then used to evaluate and visualize localization result sequences sT1 for position
annotated measurements from the collected corpus of tracked paths. New paths

4.6. Evaluation 59

Figure 4.10 Schematics of the evaluation process for the overall localization frame-
work performance.

can be designed and combined with synthetic measurements generated from radio
propagation models.

As the running of the localization algorithms is only a CPU-bound task, in contrast
to the radio propagation, this is done locally by using the same components that
are also contained in the server deployment. Such a visualized localization result are
shown in figure 4.9.

4.6 Evaluation

The evaluation of the different localization algorithms is performed by the Evaluator
component that is shown in figure 4.1. The Evaluator has access to the corpus of
position annotated measurements that were manually collected for different Wi-Fi
capable devices.

The Evaluator is configured by different parameters that determine the target device,
the used environment with radio propagation Model and the individual behavioural
properties of the localization algorithms. The environment is constituted by a 3D-
scene, with the relevant dimensionalities. The environment is enriched with SSMs of
all configured APs for a selected material parameter optimization run. Furthermore,
the resolution of the state space in ratios of the radio propagation resolution can
be defined. A 1 : 1 ratio leads to 2 · 106 states with 20cm edge size in the UMIC
scene. At least, the localization algorithm is defined and the corresponding default
configuration values can be overridden.

The evaluation is started by selecting a subset from the available evaluation corpus.
These selected paths are then evaluated in parallel by running multiple Localizer
instances. The different result sequences are compared with the available correct
positions and different types of errors are computed. The HMM and the PF localizer
return an offline, an online and an averaged online result sequence (see 4.3.1.5 and
4.3.2.4). The different types of errors contain the averaged error over all typed se-
quences in 2D and 3D form. Furthermore, the median error over all typed sequences
for each dimensionality is reported. The median error is more robust to negative

60 4. Design

Figure 4.11 Example results of a brute force optimizing run with the Evaluator.
Empirical values for the emission and transition are determined by looping over
combinations of σ values for the transition and emission probabilities of the Particle
Filter model. Different error types lead to different optima. The range of σ = (5, 5)
yields acceptable results for both error variants.

outliers as localization failures to recognize the transition from one building level to
another or other pathological cases.

The results of an evaluation are given in plain HTML-reports for the different possi-
ble aggregations of the errors. Such aggregations contain sub-errors over the different
configured paths. Results for individual tracked paths are drawn on a 2D-map and
combined with a HTML-report of the algorithmic steps in resolution of a time frame.
The results can be afterwards accessed via the HTTP-Server.

The Evaluator component was used to empirical fine-tune the different properties
of localization algorithms. For example, the variance of the emissions and the tran-
sitions of the PF were determined by a brute force search over the parameter space
as visualized in 4.11. A typical efficiently configured evaluation run for the 160 col-
lected paths for a single device takes around 2 minutes on current Hardware. Thus,
low dimensional brute force searches are feasible.

4.7 Summary

The presented architecture of the localization framework captures all necessary as-
pects that are needed for solving the positioning and tracking problem. A cen-
tral HTTP-Server, build around loosely coupled components, provides the differ-
ent communication channels between the consumers and producers of information.
These information sources contain moving Wi-Fi capable devices, GPU-nodes and
Fat Clients.

After allocating a 3D-model of the indoor localization environment with position
configured APs, the PHOTON raytracer is employed to build a radio propagation

4.7. Summary 61

Model for the expected RSSI values. The free parameters of the model are then
trained with a genetic algorithm that is distributed over an array of GPU-nodes.

The RSSI based localization algorithms, the Hidden Markov Model and the Parti-
cle Filter, are based on the same basic model assumption given by the state space
model of Figure 2.11. The model parameters for the emission probabilities of the
two algorithms are derived from the trained radio propagation models. Although
the transition probabilities for both algorithmic approaches are modelled differently,
both rely on the 3D-geometry for restricting invalid movements. Position annotated
measurements, for training the model parameters with the classical parameter infer-
ence algorithms like the Baum-Welch algorithm in the HMM case, are not assumed
to be available.

The Wi-Fi capable devices are only dumbed down information providers and have
no higher functionality.

The support infrastructure is given by the Fat Client that is used for interactive
debugging of the algorithms and associated data-streams, and finally by the Eval-
uator that is utilized to measure the overall performance in terms of error rates of
the localization framework.

62 4. Design

5
Implementation

In this chapter, the implementation of the localization framework will be exam-
ined under the different aspects of modern software engineering. The framework is
responsible for the training and the simulation of the PHOTON generated propa-
gation models. These models are the foundation for the implemented localization
algorithms that process the RSSI data streams of mobile devices. A GUI can be
used to analyse and debug the different data streams with an interactive 3D en-
gine and an evaluation engine generates HTML reports over different propagation
model/localization algorithm settings.

The framework has been written from the scratch during the six months of this thesis
and although some design decisions have been made more in an ”ad-hoc” way, it has
proven to be a valuable tool for the posed problem. The Server, the Fat Client and
the device software have been written in the Python programming language. Since
Python is an interpreted languages, this makes the framework in general platform
agnostic. Most of the development has been conducted under the Windows operating
system whereas the primary deployment of the Server is running under Linux. The
Fat Client was also successfully tested under OSX.

Python is an imperative, interpreted, dynamically typed, general purpose program-
ming language with a very readable syntax. All the important compound data-
structures like tuples, lists, dictionaries (hash maps) and sets are first class citizens
in the language and can be manipulated with powerful techniques like List/Dict/Set
Comprehension. Memory management is handled deterministically by a reference
counting based garbage collector. Threading support is usable for tasks that should
handle blocking IO, but Python byte-code will only be executed serially in the in-
terpreter VM. The standard library, although not as excessive as the two behemoths
JRE and CLR, covers all basic needs of modern applications. Additionally, a healthy
environment of third party libraries, especially in the context of scientific information
processing and web development, satisfy all the remaining needs.

The luxuries of the Python feature set come with a cost: Python is slow. But
slowness is a relative measure. Interpreted Python is about 50 times slower than

64 5. Implementation

compiled C and still around 20 times slower than JITed Java. For most of the
individual use-cases found in the localization framework, this is fast enough. But for
the number crunching cores of the localization algorithms, the use of pure Python
can be excluded. Therefore, these parts of the frameworks that should be fast and
memory efficient, are implemented in Cython, a Python-to-C compiler. Cython
allows seamless integration of compiled machine code into the Python runtime and
achieves significant faster execution times for computational and memory intensive
operations.

The Python code is structured primarily with namespaces and classes. Instances
of classes are mostly used as scoping containers, higher object oriented concepts
such as subclassing is only used sporadically in the framework. Writing idiomatic
Python code, adhering to the so called Zen of Python, was a relevant design principle.
Sadly, the rules of good software practice have been violated by ignoring the task of
writing unit tests for the framework. But up till now, the implementation is rather
represented by laboratory than by an assembly line, so the need for them was not
that pressing either.

The third programming language that was used, is JavaScript. The output of
the HTTP-Server includes some dynamically generated HTML pages. There, the
JavaScript code is responsible for adding some interactivity to the HTML frontend.
The JavaScript code is strongly JQuery driven. The following table, the output of
cloc-count1, gives an overview over the usage of the three programming languages:

Language Files Blank Comment Code

Python 26 2530 1001 8627
Cython 1 472 216 1347
Javascript 2 86 13 328
Total 29 3088 1230 10302

5.1 Third Party Libraries

A number of open source libraries from the Python ecosystem were used in the
framework. All, but Pygene, a set of genetic algorithms, are liberally licensed.
Pygene uses the GPL v2, but the others are MIT like licensed. All, but Pygene,
are actively maintained and backed by a strong community. But Pygene is a small
library that can easily be replaced/reimplemented if that should become necessary.

The NumPy/SciPy/Matplotlib/Cython library ecosystem was the most important
for the realization of the framework. There are no real alternatives of the same
quality, so they cannot easily be replaced. The other presented libraries have ei-
ther comparable alternatives or are only employed for less important use-cases as
debugging2 the data streams..

1http://cloc.sourceforge.net
2Less important with respect to the final results of the thesis, but surly important for reaching

them.

h

5.1. Third Party Libraries 65

NumPy/SciPy/Matplotlib

The NumPy library is a major building block for the data structures of the frame-
work. Numpy provides fast and efficient multi-dimensional array structures (ndar-
rays) to the Python runtime. Additionally, a large number of linear algebra al-
gorithms are available for the ndarrays due to linking against the BLAS/ATLAS
runtimes. With NumPy, tight loops of custom algorithms have to be handled with
blockwise elementary operations over the ndarrays. A multitude of elementary op-
erations like sum(), max(), abs(), are predefined and the method of choice if speed
is crucial. But designing algorithms under that ”blockwise” philosophy leads to
somewhat awkward formulated implementations. Therefore, only the ndarray data
structures, the infrastructure for file-IO and some filters for data preprocessing/data
visualization have been used. For example, the PHOTON output is loaded directly
into the ndarrays with a single line of NumPy.
By this choices, the implementations of the localization algorithms use only the
ndarray data structures and implement the tight loops in Cython, as this leads to
more flexibility and readability.

The SciPy library supports NumPy by offering a large number of efficient numerical
routines working on the ndarray data structures. Especially the muti-dimensional
image manipulation routines have proven to be very convenient during the thesis.
And finally Matplotlib, a very flexible plotting library that integrates well with the
NumPy data structures and provides publication quality figures. The combination
of these three libraries with Python scripting glue represents a more than adequate
alternative to scientific computing environment like MATLAB.

Cython

Cython is a Python-to-C compiler that was used for implementation of the localiza-
tion algorithms. If the compiler is executed on pure Python code, the gains in the
form of execution speed are minimal. The real performance improvements come from
hints that are given in the form of type annotations. Tight for-loops that use only
such typed variables are directly translated into their C equivalents and executed
independently of the Python Virtual Machine. This leads to speed ups of multiple
orders of magnitude compared to code running in the Python VM. Furthermore,
strong support for the ndarray data structures is given which results in a seamless
integration into to NumPy/SciPy/Matplotlib ecosystem. Consequently, the SciPy
library consists of a large number of Cython implemented routines.

Another benefit of Cython comes by the flexible control over the threading behaviour.
As mentioned in the introduction of this chapter, Python has no strong threading
support. Native OS threads are supported but the execution of the thread-specific
Python byte-code is conducted serially due to a globally enforced interpreter Lock
(GIL). The Cython library enables to control this locking behaviour. It allows to
release the Lock temporarily, and therefore let the Python VM continue on other
threads. But this is only allowed if the implementation ensures not to access any
objects from the Python runtime, during the lockless execution.
This is exactly the case during the tight loops of the localization algorithms where

66 5. Implementation

accessing Python primitives like Lists or Dicts is out of the question anyway. Releas-
ing the global interpreter lock makes Python based threading efficient. For example,
4 instances of an algorithm can be started simultaneously from the Python VM and
execute their binary code in parallel. Even more fine grained threading control can
be reached by using the support for OpenMP instructions that are available in pure
C space. By only using a slightly modified syntax for loop control, the loop becomes
instrumented by the OpenMP backend compiler support (GCC or MSVC) and will
be executed on multiple automatically spawned threads.

The localization algorithms have therefore been implemented by applying the same
procedure: prototype the algorithm in pure Python on smallish datasets with ndar-
rays. Move the Python code to Cython and make the algorithm fast by applying
type annotations. If the algorithm is then only composed as a sequence of GIL-free
C loops over ndarrays, it can already be executed in parallel. Tuning the multi-core
capabilities even more with OpenMP has only been done for the HMM implementa-
tion as the ”magic” of OpenMP imposes some constraints on the algorithm. These
constraints relate to sharing of variables over different scopes which would invali-
date some assumptions of the Particle Filter implementation. Although this is not
a surprise, as efficient parallel algorithms are often difficult to implement.

CherryPy

CherryPy is a light-weight HTTP-Server implemented in pure Python. The Server
component of the framework is designed as a CherryPy application. A central con-
cept of a HTTP-Server, the URL-routing is defined by exposing functions of the
application to act as URL-handlers returning some mime-type encoded string. Pro-
viding a new service behind an url is therefore cheap and has made the prototyping of
the different communication channels between the information producers/consumers
an easy task. Although CherryPy acts as a standalone HTTP-Server it would make
sense to run the service behind an Apache proxy server in the future.

Pygene

The Pygene library was used for the implementation of the optimization process
for the radio propagation models. It provides a set genetic algorithms that are
modelled around the concepts of population, organism and gene. Organisms are a
compound data structure for genes and populations hold a number of organisms.
Genes represent parameter values of an optimization and have a type corresponding
to the primitive Python types like floats. Furthermore, genes can define upper and
lower boundaries for their values. An organism holds a collection of genes with
values and represents a solution in the search space of the optimizer. The search
space is explored by crossing the genes of selected organisms from a population.
This crossing leads to a new population of organisms and represents a new set of
solutions.

It is an exotic library with respect to the GPL license and the small algorithmic
core. It would not be that hard to implement a comparable set of features, but the
inner workings of genetic algorithms were of minor concern in this thesis.

5.2. Modules 67

SL4A

The Scripting Layer For Android (SL4A) framework was used for programming
the device software. The SL4A enables the use of Python on Android devices and
provides access to the larger part of the Java-based APIs. Only the Wi-Fi APIs have
been accessed which has resulted in around 50 lines Android specific code. It can be
expected that the distribution of SL4A based Python scripts will have deployment
issues in contrast to native Java based applications. But it would be easy to get rid
of the SL4A dependency if this becomes be necessary.

Traits-UI and MayaVi

The Traits-UI and MayaVi libraries are used to drive the core of the Fat Client.
Traits-UI is a Python based GUI framework with a nice balance between the need
for configurability and the ”beauty” of the results. The MayaVi library is a wrapper
around the VTK 3D visualization toolkit and provides the integration, of this excel-
lent exploration tool for 3D data of different shapes, into the Traits-UI environment.
Both have been shown to support a rapid prototyping style that was needed to adapt
to the different ideas that have come up during the time of the thesis. The API of
the 3D MayaVi plotting library is conveniently designed after the 2D plotting li-
brary Matplotlib. This makes the mental overhead even smaller. The central Server
component has no dependency on the rather fat libraries.

ConfigObj

The configuation of the localization server is driven by a .ini style config format that
is processed by ConfigObj library. Its is a pure Python library with the capability to
map the string represented config parameters to primitive Python types and simple
compound structures like int lists. For this mapping a specification file, also in .ini
style format, has to be defined which represents also a good place to document the
behaviour of these values. This is comparable to define a XML-Schema for some
custom XML configuration dialect but with readability included.

JQuery

The JavaScript that is executed in the browsers of the mobile devices and on some
debugging terminals is driven by the JQuery framework. Adding dynamic elements
to the HTML pages, for example the interactive recording of location annotated
RSSI readings, has not required much efforts due to convenient API of the library.
JQuery has a memory footprint of 25kb which should not pose any problems for
consumer connection conditions.

5.2 Modules

In this section, the different major components of the framework are described. The
used data structure are focused and interesting algorithmic aspects highlighted.

68 5. Implementation

5.2.1 Server

The Server component implements the core of the localization framework and is
implemented as a CherryPy application. The Server can be started from the Python
package lws by pointing to a configuration file:

>> python -m lws.cli path_to_config.ini

After loading the config and initializing the HTTP-subsystem, the Server listens
for commands from the clients. If such commands arrive over the HTTP channel
they will be dispatched by the Server to the responsible subsystem. For debugging
purposes most subsystems will be code-reloaded before processing the command.
This has made developing the system very efficient.

Simulator

The Simulator is a subsystem of the Server and is responsible for coordinating the
construction of radio propagation models. It is a singleton and drives a priority
queue from the Python standard library. The queue contains Job() instances that
represent a set of material parameters and a set of .obj (Wavefront Format) files. The
consumers of the jobs are the GPU-nodes whereas the producers of the Jobs are either
the Optimizer or the Fat Client. The Optimizer pushes jobs into the queue during the
training process, and the Fat Client uses the Simulator for retrieving full propagation
models that should analysed. The raytracer voxel arrays are compressed transmitted
from the GPU-nodes over the Simulator to the consumers as they contain about
10mb raw data that can be reduced by a factor of 3.

The priority aspect of the queue is useful for serving ”high priority” requests from
the Fat Client before processing the next thousands of Optimizer started training
jobs. Furthermore, it is more efficient for the Optimizer to combine all jobs for a
single genetic organism, N jobs for the evaluation of the material parameters over N
APs, in one priority slot since this leads to more efficient cluster usage.

Optimizer

The Optimizer is responsible for the training of the radio propagation models with
an optimization algorithm and it employs the PyGene library for this task. It is
initialized via type checked HTTP-GET parameters over the Server component.
Such a parameter set is defined in table 6.3. Additionally to the optimizer parameters
a restart of older optimization runs can be enforced. This restart is implemented
by deserializing the last population of the old optimization run and using it in the
current run. Additionally some new randomized organisms can be injected.

After the initialization phase, the core loop of the optimization run is started threaded.
In the core loop, the evolutionary process is simulated by executing successive genera-
tions of populations with the PyGene API. The complex part of the implementation,
the custom logic for the raytracer training is implemented in the fitness() function
of a RadioPropConverger() class that is derived from a pygene.Organism(). The
fitness function is called from the PyGene framework for each organism instance of

5.2. Modules 69

a population. In this function, a Job() for each AP is queued in the Simulator and
configured with the free parameter values obtained from gene values of the organism
instance.

The different free parameters of the model have to be declared in the genome

class variable of the RadioPropConverger(). Each element of the genome is a
named subclass of pygene.Gene(), for example in the Optimizer implementation
the MaterialGene(pygene.FloatGene) gene class is used.

If all submitted jobs are returned, the fitness of organism can be computed which
leads to progress in the population evaluation. If all organisms are fitness-evaluated,
the Optimizer can decide to stop the process. This is either decided by a hard limit
onto the number of allowed generations of if the difference between the quality of
two populations becomes to small.

The individual fitness() results with the corresponding free parameters are stored
and the full convergence process can be visualized with the Plotter. The output of
such a visualization can be seen in figure A.10.

Plotter/Evaluator

A smaller component that is only implemented at the module level, is the Plotter. Its
main responsibility, which can be derived from the name, is the output of different
graphics that are used to understand the localization results of the framework. It is
accessed by the Evaluator and the Server component. Whereas the Evaluator uses
the Plotter to produce plots of the evaluated localization results (see figure A.9)
or other special details of the algorithms, the Server only retrieves these plots and
delivers them to the clients. The plotter uses primarily the presented Matplotlib
library and a generic 2D drawing engine, the Python Image Library (PIL). Since the
different produced plots share only minor properties, the Plotter consists only of a
list of functions instead of being implemented at the class level.

The Evaluator is implemented as a Python class that it responsible to evaluate the
error rates and other properties of the localization results. The instantiation of an
Evaluator class is configured by a set of initialization parameters that describe the
setup of the environment and the configuration of the chosen localization algorithm.
The instance can then be instrumented to analyze a part of the evaluation corpus
by calling the evalAll(pathid2runids) method. The pathid2runids represents the
chosen subset of the corpus and is a mapping from pathids to lists of sample runs.
The chosen samples of the corpus are evaluated in parallel by using the convenient
concurrent package from the Python standard library. Since all algorithms are ex-
ecuted in GIL-free C-space, the Evaluator is able to exploit multiple cores efficiently.

After computing the localization results for the chosen samples, the different variants
of the error rates are determined and stored in path-separated XML files for later
inspection.

Renderer

The last subsystem of the Server is the Renderer that is used for generating HTML
pages for the various web-browser based user interfaces. It consists only of a col-

70 5. Implementation

lection of functions that are used to generate the HTML code with Python string
processing capabilities. Further development on the framework will probably induce
the need for a higher level templating engine.

5.2.2 Localization Algorithms

Each localization algorithms in the presented framework is implemented as a Python
class derived from the Localizer() class. The Localizer() class is responsible for
handling the general interactions with the framework, whereas the subclasses imple-
ment algorithmic specific code that has a low computational footprint. The imple-
mentation of the computational expensive parts is relayed to the Cython language
for each of the three algorithms.

Environment

The information about the scene specific details needed for the application of the
localization algorithms is stored in the Environment() class which is therefore avail-
able as a private member to the Localizer() derived implementations. The Envi-

ronment() class is initialized by a list of AP definitions which will lead to loading
the corresponding stored PHOTON output files. The 3D voxel data of PHOTON
is stored in .raw files which compose of a simple concatenation of float32 values,
representing RSSI values, that are loaded into a 3D ndarray with NumPy-native
functions.

Furthermore, the scene geometry, represented by a .obj file, will also be loaded by
the Evaluator. An initialized Environment hold thus the two primary datastructures
that are used for deriving the location conditional probabilities. The scene geometry
triangle mesh is used for generating the ndarrays for the transition probabilities.
And the PHOTON output is used for computing the ndarrays for the emission
probabilities.

HMM

The HMM based algorithm is implemented in the HMMLocalizer() Python class
in conjunction with the ViterbiDecoder() Cython class. On initialization, the
HMMLocalizer() loads the cached or refreshes the needed emission probabilities by
delegating the PHOTON data stored at the Environment() to the Cython func-
tion buildStatesWithEmissionProbs(). The returned ndarray emission_probs

is stored at classlevel.
The ndarray transition_probs for the transition probabilities is also generated in
this step. At first, the triangle mesh of the scene is voxelized by Cython accelerated
functions. On the voxelized representation of the geometry, the transition probabil-
ities can be efficiently computed by the Cython function buildTransitionProbs.

The ViterbiDecoder() class is initialized with both ndarrays for the probabilities
and can be used from the HMMLocalizer() for the decoding of a sequence of RSSI
measurements. The basic flow of the input in form of RSSI reading is given by the

5.2. Modules 71

call chain:
HMMLocalizer().evaluateMeasurements(ms)→ self.decoder.decode(ms). Dur-
ing the first call, the high level representation of the measurements that are instances
of the Measurements() class is interpolated to adjust the number of RSSI readings
to the constraints of the employed (5, 5, 3) transition model. This has to be done
since the coverable distance between two succesive RSSI vectors would be limited
to jump over two voxels. Afterwards, the measurements are additionally converted
into an efficient indexable ndarray.

The decoding process in decode(), implements the Viterbi Algorithm described in
section 2.5.2 with the designed pruning technique described in section 4.3.1.4. To
keep track of the best hypotheses during the decoding of the RSSI values for a time-
frame, the SkipList [19] datastructure is employed. This datastructure represents a
permanently sorted list with efficient insertions of new members.

After decoding the unpruned state space, which is essentially composed of multiple
tight loops over the measurements ndarray and the ndarray of the probabilities, three
Python lists representing the localization results for the online, averaged online and
offline variant are returned.

For the offline variant of the resulting sequence, the backtracking ndarray back_track

is employed which links each location hypothesis to its predecessor hypothesis. This
ndarray dominates the memory consumption of the algorithm due to its T ×S com-
plexity, if T is the number of timeframes and S the number of locations. Therefore,
the ndarray stores only int8 values, which represent the link by its transition in-
dex which is of the range 0..75 for the (5, 5, 3) transition model. If the transition
model would be of higher complexity, and exceed 256 jump possibilities, the memory
consumption would be doubled as an int16 address space becomes necessary.

Particle Filter

The Python side of the PF algorithm, in the form of the PFLocalizer() class,
is very similar to the described HMMLocalizer(). Contrary to the HMM case, no
transition probabilities are generated from the scene geometry. Only the voxelized
representation of the geometry is constructed that is later used for rejecting particles
that interfere with that structure. The other difference is given by the missing inter-
polation step of the RSSI readings, as constraints like the (5, 5, 3) HMM transition
model are not given.

The PFLocalizer() prepares a pool of values for a three dimension Gaussian that
are used in a round-robin scheme during the particle spawning or sampling process.
This spawning is a part of the simulation of the modelled stochastic process which is
implemented as the Cython sibling class ParticleFilter(). This class is initialized
with and ndarray containg emission probabilities, the sampling pool and the vox-
elized representation of blocked zones. All three ndarrays are used during decoding
the RSSI sequence.

To efficiently keep track of the top N hypothesized locations for a single timeframe,
the SkipList datastructure is used similar as in the HMM case. The top N hypothe-
sized locations of a time frame are used for calculating the averaged online prediction
of a location.

72 5. Implementation

Like the HMMLocalizer(), the PFLocalizer() decoder returns three lists of posi-
tions for the offline, online and averaged online result variant.

LMSE

The most simple algorithm, is the LMSE based approach which is implemented in
the LMSELocalizer() class and the corresponding LMSE() Cython decoder class.
The Python side computes only the ndarray for the emission probabilities for the
voxelized RSSI values for each AP. This ndarray initializes the LMSE() class that is
afterwards instrumented via its decode(ms) function to evaluate the measurement
sequence of the input signals.

To efficiently keep track of the top N solutions for the nearest neighbour distance
computations that are executed over the total localization space, the already in the
HMM and the PF employed SkipList structure is used. The top N solutions can be
understood as a simple clustering of the best locations and has for example in the
ARIADNE [13] system been enhanced to a k-means clustering model.

5.2.3 Fat Client

The Fat client is the primary debugging tool for the behaviour of the radio prop-
agation models and the algorithmic progress of the localization algorithms. It is
build around the Traits-UI GUI toolkit that conveniently embeds the MayaVi 3D
engine for scalar data visualization of the localization space. The location related
scalar data has to be given in the form of ndarrays that are already used all over the
implementation of the framework. Most transformations of the algorithm specific
ndarrays to a MayaVi compatible structure is done by the native functionality of
the NumPy/SciPy libraries. If the solution could only be awkwardly implemented
with NumPy block operations, Cython functions have been implemented for better
readability and flexibility.

The GUI needs access to the described Server infrastructure that is defined by its
HTTP address. It uses the Server for initialization to a specific 3D geometry and
the corresponding AP placement. Furthermore, it can investigate the training cor-
pus for the radio propagation models and the evalution corpus for the localization
algorithms. The PHOTON generated RSSI predictions can be visualized with the
MayaVi engine after beeing processed by the GPU-nodes and subsequently delivered
by the Server. Due to the GPU-driven nature of the PHOTON raytracer, this design
choice makes sense as no special hardware and CUDA driver setup is needed on the
client side.

As mentioned, the evaluation corpus for the localization algorithms are also fetched
from the Server over HTTP and can be used to investigate the results of the al-
gorithms. The algorithms are executed locally as the Fat Client has access to the
code of the corresponding modules from the Server infrastructure. The different Lo-
calizer() classes can be instantiated with Environment() conditions that can be
manipulated from the GUI. The algorithmic progress from timeframe to timeframe
of the top N location hypotheses can be visualized for the HMM, PF and LMSE
implementations. This is very helpful to find weaknesses in algorithmic properties.

5.3. Summary 73

Another convenient implementation detail of the Fat Client is given by the embed-
ded Python interpreter which can be used to analyse most datastructures of the
framework interactively. Formulating questions over this scripting interface is very
efficient from a developer point of view.

5.3 Summary

In this chapter, a cursory overview of the chosen programming paradigms and some
of the implementation details have been presented. As can be observed, the devel-
oper of the system, the author of the thesis was satisfied with the implementation
results that have been reached under the constraints of a six-month thesis. The
choice of Python and Cython as development platform has lead to an efficiently
prototyped localization framework that employs fast algorithms with a low memory
footprint. The chosen open source libraries, especially the NumPy/SciPy/Matplotlib
ecosystem, have shown to be of very high quality and can therefore be recommended
as well.

74 5. Implementation

6
Evaluation

This chapter is dedicated to the evaluation of the presented localization framework.
Special attention is given to the description of the setting and the environment con-
ditions of the experiments as this was often only briefly reported in the investigated
literature1.

After describing the experimental setup, the results for the training process of the
radio propagation models are analysed. A focus is placed on the behaviour of the
training process under different levels of 3D geometry granularity. An additional
experiment for the radio propagation context is conducted by evaluating the ability
of the models to generalize over multiple devices. The generated models and the cor-
responding observations are subsequently used for the evaluation of the localization
algorithms that were designed and implemented.

It will be reported how the three algorithms, the LMSE, the HMM and the PF, per-
form on a selected fully trained propagation model. In the first step, the algorithms
are compared on synthetic data obtained from the propagation model under differ-
ent noise levels. The differences between the results of the individual algorithms
are explained by their underlying algorithmic properties. The use of synthetic data
makes this task easier.

Using the results of the radio propagation evaluation and the experiences from the
analysis on synthetic data enables a thorough investigation of the framework perfor-
mance on real world conditions. Location annotated RSSI readings for a distance of
about 8000m were manually collected for eight different track configurations of vari-
ous complexity. This evaluation corpus is used to estimate the localization errors of
the three algorithms over differently trained radio propagation models. Furthermore,
the effect of the devised Device Adaptation scheme described in 4.2.3, is analysed
and interpreted.

1Although it should be emphasized, that the investigated literature was mostly available in the
form of journal papers which have surely made compromises due to page count constraints.

76 6. Evaluation

6.1 Radio Propagation Model

The evaluation of the framework starts with a detailed explanation of the environ-
ment that is used for the experiments. The introduction of the setup starts by
describing the different properties of the manually created 3D geometry that is uti-
lized to drive the PHOTON raytracer. Afterwards, the placement of the different
AP groups and the resulting coverage conditions is analysed. In the next step, the
composition of the training corpus that drives the optimization process is presented.
A relevant number of measurements over 100 locations in the UMIC scene were
taken with four different Android devices. These measurements will represent the
largest part of the training corpus that is employed in the evaluation.

After the introductory part, it will be seen how plausible the trained propagation
models adapt to the true nature of the environment by using the optimization crite-
rion, the RPE, as a measure2. An experiment that investigates the training process
over measurements of different devices and another one that tries to understand
how important the granularity of the 3D geometry is, will finalize this part of the
evaluation.

6.1.1 Scene and Setup

The evaluated localization scenario is located in the UMIC Building3 of the RWTH
Aachen. It is a four level building with a rectangular floor-area of around 900m2.
The first three floors were modelled in Blender leading to a volume of around 8100m3,
as the height of a level is around 3m. It is composed of ”reduced to functionality”
office architecture and was erected in the year 2009.

6.1.1.1 3D-Model and Materials

The 3D-model consists of 11 different object classes given in the form of triangular
meshes. The class of an object is defined by the assigned material. The choice of
the materials was made by reasoning about their importance of their impact on the
radio propagation. Probably the most important ones are the Concrete and the
LightWalls class of objects. 2D-Maps of the building at the resolution of these two
materials were available and are used as a base for these two classes of objects in the
3D-model. Further modelled detail is given by doors with the three material classes
IronDoor, normal Doors and GlassDoor. The limits of the building are modelled
with the two materials Fascade and GlassWindow. Additional furniture details are
captured by the materials Cupboard and Table. Also included for completeness is the
metal based railing of the stairs and hardware components that are located next to
some of the APs or components that exhibit a massive structure, like the hardware
array of the server room.

2This can lead to a serious overfitting of the model, but since the training corpus had only a
size of 100 locations it has been concluded that they are to valuable to sacrifice some of them to
allow the better cross-validation technique.

3Google Maps reference: http://g.co/maps/q3mp6

6.1. Radio Propagation Model 77

Material Nvertex Ntriangle ≈ V in m3 avg. Thickness in m

Concrete 3344 5849 1523 0.3
LightWalls 1822 2942 174 0.15
Doors 528 792 2 0.03
GlassDoor 480 684 1 0.02
IronDoor 120 180 2 0.05
Fascade 1432 2144 127 0.4
GlassWindow 1372 2046 28 0.05
Cupboard 368 540 12 n/a
Table 328 492 13 n/a
Hardware 48 72 3 n/a
Railing 240 408 3 n/a

Table 6.1 Properties of the UMIC scene geometry with respect to the different
material classes.

All these materials are listed in table 6.1 with corresponding vertex and triangle
counts for the UMIC scene. The enclosed volume V for each material has only been
approximated from a voxelized representation. Since the voxel-representation tends
to overestimate the volume at the boundaries of wall-like objects, the volume was
adapted with respect to the empirically determined average thickness of the scene
objects for each material.

6.1.1.2 Accesspoints

As the primary information source for the localization system, 22 APs were em-
ployed in the evaluation. 9 of these APs are part of the EDUROAM infrastructure,
that is provided as a service of the university and are therefore stationary in the
experimental setup. 7 APs are ASUS models and were placed to cover the floors
evenly. 4 APs of a different ASUS model were part of an experiment of another
research group and are also assumed as stationary. The last two APs are Linksys
WRT54G models, that were salvaged from the harware pool of the author. They
were placed near the stairways since the other APs had somewhat neglected this
area.

As can be seen in figure 6.1, the coverage density of the APs is pretty high. Most
space is covered by at least 6 APs. As is concluded later in the evaluation, lowering
AP density below that threshold leads to much higher errors in the localization
algorithms. Further steps to optimizing the setup can be conducted by relocating
the APs with the target to maximize the average AP density. Other optimization
targets for a guided relocalization could try to maximize the variety of the signals,
as this is the primary information source for the localizer. These approaches can
probably be automated with the help of the raytracer.

78 6. Evaluation

Figure 6.1 Access Point coverage of the building after placing the moveable APs
for the training procedures. The histogram is extracted from raytracer simulations.
The total volume of the modelled UMIC building is given by 8100m3. The average
AP density at a location in space, from at most 22 APs, is given by 7.6 APs per
voxel.

6.1.1.3 Devices

Multiple devices were evaluated by taking measurements at locations with differ-
ent ratios of completeness with respect to 100 defined locations. Investigating the
performance of the framework over more than one device leads to a better under-
standing about the generalization capabilities of the system. This means, it can be
seen if the trained propagation model adapts only to device-specific and not to the
environment-specific properties, which are the more interesting here.

The primary two Wi-Fi capable devices were an Acer Iconia Android tablet and
a Nexus 4 smartphone. Some experiments were also conducted with the WISPY
spectrum analyzer. The remaining two devices are again Android smartphones.
One is a Galaxy P and one a Nexus 1. And the last device was an external TP-Link
USB-Adapter connected to a linux driven netbook. As can be seen in the next table,
the first two android devices have been analyzed more thoroughly.

Device Type API Nlocs Naps Nall Nrssis

Iconia Tablet Android 3.2 86 22 924 25715
Nexus Phone Android 4.0 94 22 919 20428
Galaxyp Phone Android 2.3 68 22 496 7644
Nexus1 Phone Android 2.3 73 22 515 8055
Messbook USB-Adapter Libpcap 44 20 492 4478
Wispy Spectrum Analyzer Custom 19 3 41 41

The different numbers represent the following values: Nlocs is the number of vis-
ited locations. Naps the number of unique APs for which measurements have been
collected. Nall is the number of (location, AP) tuples with measured RSSI values.
Some combinations have no values due to their distance. And finally Nrssi is the
total number of RSSI readings that were taken at for the Nall combinations.

The measurements for the Android devices were taken by interfacing with the OS-
level APIs. For the linux netbook a Python wrapper over libpcap was used.

6.1. Radio Propagation Model 79

41 special measurements over three APs of the asus AP class, have been taken with
the WISPY spectrum analyzer. The spectrum analyzer measures signals from the
APs at a lower layer that the packet-aware Wi-Fi-chipsets. It reports the energy
level of the electromagnetic field for a frequency vector with a fine grained time-
sampling. But this means also, that the AP source of the signal is not known. The
primary use-case of the device consists of finding the Wi-Fi channels that are less
used by the different consumers of the electromagnetic spectrum. Switching APs to
unused channels can increase the service quality of the Wi-Fi infrastructure.

The problem of AP identification with the WISPY was solved by customizing the
firmware of three asus-APs. The modification allows the AP to send a burst signal
sequentially over all 14 Wi-Fi channels. The underlying burst signal can be identified
easily on the Wi-Fi data stream. The main drawback of this technique has been
materialized in the efforts that are needed to measure a single AP RSSI value. The
values of the different APs need to be recorded serially instead of synchronously as
in the case of the Android devices. For a single measurement, around 3 minutes were
needed with all preparations. To reach the 924 AP readings of the Iconia device, 50
hours of measurements would have been required. Therefore, the simpler strategy,
to rely only on the reported readings from the Wi-Fi-APIs of the different operating
systems, was chosen.

6.1.1.4 Training Corpus

The training corpus for the raytracer simulated radio propagation models was build
by measuring the RSSI readings for the 22 APs at 100 different locations. This relates
to one location for 81m3 or a cube with edge size of around 4m. The locations are
evenly distributed over the three modelled floors and the measurements were taken
about 1m above each floor level.

The averaged standard deviation σall for measured RSSI values over Nall different
location/AP tuples is in the range of 2− 4dBm. The wispy device was excluded as
there were not enough measurements to lead to significant estimates. The class of
the 9 EDUROAM APs has a slightly better variance with σedu = 2.5dBm over their
Nedu = 1067 readings, than the other three AP classes. These APs consist of CISCO
models with a larger antenna array for MIMO support, and they are not targeted at
the consumer market. Another possible explanation for the lower variance of these
models can originate in a slightly adapted measurement technique. The CISCO
APs emit RSSI values for multiple software simulated SSIDs. By introducing SSID
aliases for these virtual APs all of them have been grouped together. This grouping
can probably also lead to the recognized lower variance. The details for the different
device/AP-class combinations are listed in table 6.2.

For each location, around 670 readings were taken for each AP over the Android
devices. This relates to a measurement duration of 17 minutes with a resolution
of 1.5 seconds per RSSI reading. The effect of the body shadow was minimized
by choosing a neutral position with respect to the placements of the APs. The
measurements were mostly taken during the office hours, so there was also some
sporadic traffic of moving people in the surroundings. It can be concluded, that
under the trade-off: effort-versus-precision, the effort was reduced. So it is sensible

80 6. Evaluation

Device Nall σall Nasus σasus Nedu σedu Nwrt σwrt Npisa σpisa

Iconia 924 3.3 367 3.5 271 2.6 72 4.3 214 3.2
Nexus 919 3.8 327 4.3 282 3.2 90 4.0 220 3.7
Galaxyp 496 2.1 166 2.2 152 2.1 58 1.8 120 2.0
Nexus1 515 2.0 177 2.1 156 1.7 62 2.2 120 2.0
Messbook 492 2.6 247 2.6 206 2.1 12 7.7 27 4.6
Total/Avg 3346 3.0 1284 3.3 1067 2.5 294 3.2 701 2.9

Table 6.2 The training corpus for the radio propagation model is composed of
measurements from different devices.

to assume that more elaborate measurement techniques lead to more precise readings
with less variance.

Most readings were taken by using the OS-level Wi-Fi-APIs of the Android and
Linux devices. These readings were measured in RSSI with minimal readings of
around −10dbm and a maximum of −100dbm

6.1.2 Training of free Parameters

The training of the free parameters for the PHOTON propagation model was con-
ducted by using the process described in 4.2.2. It is reasonable to assume, that an
optimal trained radio propagation model, a high quality representation of the real
world, leads to lower error rates for localization algorithms relying on this infor-
mation source. Therefore, the first part of the evaluation investigates how many
prerequisites in form of a 3D-geometry and how much training data in form of man-
ual measurements is needed to derive a good propagation result. The optimization
target of the Genetic Algorithm is given by the RPE. The quality of the propagation
model is assumed to be proportional to the reached RPE in the optimization process
which is therefore used for evaluation as well.

For the following evaluations, a default optimization parameter set is used that is
defined in the following table:

PHOTON Parameters Genetic Parameters
Name Value Name Value

Numphotons 500000 Startpop 80
Density in m 0.3 Childcount 80
AP Power in W 10−5 Childcull 30
Resolution (320, 99, 58) Mutprob 0.15
BBox in m (-1.0, 60.0), (-1.0, 18.0),(-4.0, 7.1) Mutamt 0.15

Table 6.3 The default optimization parameter set.

This parameter set contains the PHOTON configuration and the initialization val-
ues of the genetic algorithm. Their effects are briefly explained starting with the
PHOTON Parameters :

6.1. Radio Propagation Model 81

A total of Numphotons=5 · 105 photons are used during raytracing, which has been
shown to give a nice balance between accuracy and computing time. The Density
parameter represents the variance of the Gaussian, used for the final smoothing step.
The AP Power value of 10−5 indicates, that the genetic algorithm searches over the
range [10−6..10−4] for the antenna gain PHOTON parameters of the 4 different AP
power groups. The Resolution in combination with the Bounding Box determines
the size and the voxelization ratio of the scene. With the given numbers, a voxel
has a homogeneous edge length of 20cm.

The Genetic Parameters define the initial size of the population with the Startpop
parameter. 80 organisms lead to 1760 GPU-node driven jobs for the 22 APs of the
UMIC scene. In each generation Childcount=80 new organisms are created by ran-
domly chosen parents. The fittest Childcull=30 children determine the population
of the next generation. The Mutprob and the Mutamt parameters control, how often
mutations happen (Mutprob) and how strong the induced variability is (Mutamt).
These chosen values have been found to lead to good convergence for the UMIC
scenario under the constraints of 50 GPU nodes and around 10 hours cluster usage
for each experiment.

6.1.2.1 Granularity of the 3D geometry

An interesting evaluation can be conducted by choosing different levels of granular-
ity for the 3D-geometry that is used in the raytracer. Lesser needed detail for the
3D-geometry is translated in lesser model acquisition costs, which is therefore worth
investigating. For this evaluation, only the measurements of the Iconia device are
used to minimize eventual device specific distortions. The default parameter set for
the optimizer was used and combined with different 3D-geometries. The Basic ge-
ometry consists of the mesh triangles for the Concrete and LightWalls materials that
are listed in table 6.1. The 3D geometry for these 2 material classes is probably the
cheapest to obtain, as the basic information is available in 2D form for most build-
ings. From this 2D map, the composition of a 3D scene can be approximated, which
has for example been done in the work of El-Kafrawy [8]. Under the assumption,
that the doors are also available on an eventual 2D map, the Basic+Doors setup
was chosen. The Full setup represents the geometry with all materials of table 6.1.
In the following table, the optimization results in form of the RPE are given:

Mesh Basic1 Full1 Basic2 Full2 Basic+Doors5 Full11

Materials 1 1 2 2 5 11
RPE in dBm 5.7 5.8 4.4 4.1 4.2 4.3

It can bee seen in the first and the second column, that the reduction to one free
material parameter leads to worse convergence of the training process.
After distinguishing between the two materials, Concrete and LightWalls in the
Basic2 scenario and Concrete with the combined material Other in Full2, the RPE
drops significantly. The 5-material setup remains in the same RPE range as does
the full-detail model of the last column. In the corresponding section 6.2.3.3 for the
localization evaluation, it is investigated whether these results have an impact on
the performance of the localization algorithms.

82 6. Evaluation

6.1.2.2 Multiple Devices

In this experimental setup, three propagation models were trained by using measure-
ments from the training corpus for different device combinations. The first propa-
gation model was only trained on the Iconia tablet, the second model includes the
measurements of the Nexus smartphone and the last model uses measurements from
all four Android based devices. The reached RPE under the parameter optimization
are reported in the following table:

Device Iconia Iconia/Nexus Iconia/Nexus/Galaxyp/Nexus1

RPE in dBm 4.3 3.6 5.0

Although the combination of the four devices in the last column leads to a high
RPE of around 5dBm, the theory, that more employed devices lead to worse prop-
agation models is contradicted by the first two results. The combination of the
Iconia/Nexus measurements exhibits an even better converging optimization pro-
cess than the Iconia-only case. It also shows satisfying results with respect to the
evaluation of the localization algorithms. Such an evaluation is conducted for the
Iconia/Nexus model in the following section 6.2.3.2.

6.2 Localization

This section presents the performance evaluation of the three presented localization
algorithms. The HMM and the PF are compared with respect to the baseline given
through the LMSE approach. After describing the properties of the evaluation site
and the different evaluated localization paths, the algorithms are initially tested on
synthetic data. This will allow to compare them under idealized conditions with
respect to errors originating in the radio propagation model. The required artificial
sequences of RSSI vectors are therefore obtained from the SSMs generated by the
PHOTON raytracer.

After the synthetic evaluation, the performance of the localization framework on real
world data will be analysed. Experiments with two different devices classes, a tablet
and a smartphone, were conducted. The real world experiments are composed of
multiple localizations paths, that were manually tracked and annotated to establish
the evaluation corpus for the localization problem.

6.2.1 Scene and Setup

The evaluation was conducted in the UMIC building, described in 6.1.1, over two
android devices, the Iconia tablet and a Galaxy Nexus smartphone. Eight paths
that lead through the building with various degrees of complexities were defined and
subsequently used for taking the measurement streams. Each path has a forward
and a backward variant which effectively doubles the number of tracked paths to
sixteen. The tables 6.4 and 6.5 show the different properties of the defined paths in
detail.

6.2. Localization 83

Path Length Turns avg. Signals avg. APs Figure

eg-room-change 40.0m 12 30.5 8.9 A.1
og1-classic 36.3m 8 40.6 12.1 A.2
og1-eg 59.8m 11 65.4 6.6 A.3
og1-eg-right 69.2m 13 62.3 10.4 A.4
og1-long-rooms 81.2m 16 93.3 7.3 A.5
og1-long-straight 41.9m 7 40.6 8.4 A.6
og1-room-change 14.3m 9 43.2 9.9 A.7
stairs-upward 47.6m 11 66.7 4.4 A.8

Table 6.4 Physical properties of the defined paths in the first two columns and AP
coverage extracted from the evaluation corpus.

The avg. Signals column of the table 6.4 represents the number of these readings.
The avg. APs column indicates how many APs are received in average for a single
reading. From the avg. Time column of table 6.5 can be concluded, that successive
RSSI reading are received in approximately 1Hz which was empirically determined
to represent an appropriate pulse frequency.

Path avg. Time avg. Speed Iconia(F/B) Nexus(F/B)

og1-long-straight 38s 1.1m/s 11/11 12/13
og1-eg-right 69s 1.0m/s 13/13 11/11
stairs-upward 51s 0.9m/s 17/14 10/10
og1-classic 39s 0.9m/s 13/10 16/15
eg-room-change 52s 0.8m/s 10/10 10/10
og1-eg 60s 1.0m/s 11/11 10/10
og1-room-change 32s 0.4m/s 12/12 10/10
og1-long-rooms 86s 0.9m/s 11/10 12/12

Table 6.5 Time and speed related properties of the defined paths of the evaluation
corpus. And the size of the evaluation corpus with respect to the employed devices.

As can be seen in the columns Iconia(F/B) and Nexus(F/B) of table 6.5, at least 10
evaluation samples were collected for the forward (F) and the backward (B) variant
of each defined path. Such an evaluation sample is a sequence of location annotated
RSSI readings. The measurements were recorded at different sessions mostly during
office hours and no special care was taken to ensure perfectly constant environment
conditions. This means, that sometimes doors, which probably effect the radio
propagation, were either open or closed. In some path samples, people are either
crossing the way or occupying radio propagation relevant places. Therefore, the
evaluation corpus can be assumed to represent an appropriate representation of live
conditions which lead to random noise artefacts in the RSSI readings.

The synthetic and the real world evaluation use radio propagation models that are
trained and optimized according to 6.1.2. For the evaluation of synthetic data, a
model that was only trained on Iconia measurements is used. The same model is
also employed in the real world evaluation. Additionally, the real world evaluation

84 6. Evaluation

uses an Iconia/Nexus trained model to investigate whether the localization system
generalizes over multiple devices. The optimization result of these two models is
reported in 6.1.2.2. Furthermore, the distinction between the different devices is
only made during the real world evaluation.

Offline/Online Results

For both evaluation setups, the three algorithms are compared. The PF and the
HMM approach return Offline and Online results. Both adapt to RSSI information
contained in the history due to their algorithmic nature. The offline result is the
predicted sequence of locations under the knowledge of the full history. The online
result is the predicted sequence of locations under the knowledge of the limited
history up to a time frame. The latter represents the result that is available for a
user of a localization service who expects to be informed about his current locations,
and not about the way he came.

Therefore, it is reasonable to distinguish between the online and the offline result
and it can be expected, that the offline variant outperforms the online result due to
its larger knowledge pool. The LMSE does not use the history of the RSSI values,
therefore it reports only an online result.

The online error of the PF and the HMM is given in an additional averaged form.
This form is defined by using the mean location over the top 50 candidate hypothesis
of a time frame t instead of choosing the best hypothesized location.

6.2.2 Synthetic Measurements

In this section, the performance of the three localization algorithms is evaluated on
synthetically generated RSSI sequences used to simulate readings of a mobile device
with different noise conditions. For each of the 16 path variants 20 samples were
generated therefore leading to 320 evaluated path samples. From the lengths of
the paths given in table 6.4 can be derived that around 8000m of covered distance
are evaluated. The average movement speed is assumed to be 1m/s reflecting the
properties of the real world measurements that are concluded from table 6.5. For
every 0.75s, an RSSI vector is generated that represents the target frequency of the
RSSI pushing android devices4.

The synthetic measurements were generated by using the RSSI values of a trained
radio propagation model as the means of Gaussians with a variable noise σ. From
these Gaussians the measurements are sampled for 0dBm ≤ σ ≤ 18dBm with a
step size of 0.5dBm. The results for the algorithmic variants under online and
offline conditions, for a localization space with 40cm voxel size, can be obtained
from figure 6.2 and table 6.6.

It can be seen, that the LMSE based algorithm leads to incompetitive error rates
over all noise conditions with respect to the HMM and the PF approach. This was
expected since it does not use the valuable information contained in the measurement

4Although the target frequency was not completely reached in the real world measurements due
to network latency over the HTTP communication channel.

6.2. Localization 85

Figure 6.2 Online and offline 2D localization errors over 36 noise steps. The HMM
outperforms the PF during the online and offline mode. The averaged online result
leads to lower errors for both algorithms.

history. Interestingly, it is even slower than the PF, since all states of the location
space have to be visited at each time frame. And this is costly for a high resolution
state space.

The HMM algorithm leads to the lowest error rates over all noise conditions. Even
both online errors are lower than the PF offline error. This comes by the costs of
increased computational complexity by the factor 10 and an increase in memory
consumption of around factor 100. It can be concluded that the HMM approach
reaches lower error rates: By conducting an exhaustive search over the hypotheses
the HMM approach is guaranteed to find the optimal solution, whereas the PF
approach is not to able to generate this solution by sampling.

Furthermore, both algorithms show the behaviour that the averaged variant of the
online error leads to a better prediction of the hidden location sequence but are
outperformed by the offline error in both cases. An interpretation of this result is,
that valuable information is distributed over either the particles or the unpruned
states of the HMM. The backtracked solutions in the offline mode can make sense
of this information whereas during the online mode it can only partially be accessed
by the averaging process.

Additionally, it can be observed from the variance plot in figure 6.2, that the PF,
compared to the HMM, shows an elevated decrease in accuracy under increasing
noise at the interval 8dBm < σ < 14dBm. By investigating the individual result
sequences it was observed that at these noise levels the effect of sample impoverish-
ment (see 4.3.2.3) becomes significant and seems not to be handled optimal. It is
only countered with random re-sampling which induces a new noise component and
therefore leads to a degraded result. A better way to handle the decay of the set of
particles in the PF algorithm is proposed in the work of Widyawan [29]. The basic
idea is to conserve the particle history, manipulate it by using information from the

86 6. Evaluation

Online and Offline LEs in m for Noise: σ = 14dBm (forward+backward)
Path HMM/off HMM HMM/avg LMSE PF/off PF PF/avg

eg-room-change 1.76 2.34 2.08 4.97 2.51 3.00 2.51
og1-classic 1.09 1.66 1.41 3.60 2.11 2.46 2.04
og1-eg 1.60 2.44 2.23 5.00 3.04 3.54 3.22
og1-eg-right 1.51 2.27 2.04 5.38 3.03 3.46 3.15
og1-long-rooms 1.83 2.53 2.33 6.05 3.07 3.67 3.28
og1-long-straight 1.38 2.07 1.87 4.20 2.14 2.61 2.28
og1-room-change 1.63 2.05 1.84 3.61 2.45 2.74 2.34
stairs-upward 1.20 2.31 2.11 5.98 2.69 3.09 2.76

Mean in m 1.50 2.21 1.99 4.85 2.63 3.07 2.70
Stdev in m 0.25 0.32 0.34 0.91 0.39 0.44 0.47

Table 6.6 Online and offline localization errors under σ = 14dBm. The differently
defined paths show significant differences in their error rates.

degraded set and restart the sampling at some point in the modified history. But
the analysis of this approach is reserved for future experiments and has not been
covered in this thesis.

Another interesting result is derived from table 6.6. The defined paths, that repre-
sents different localization scenarios, show significantlys different error rates. These
difference can have the following causes: Either the path is covered with more APs
which leads to more valuable emission probabilities. Or the path is complex with
respect to the number of turns or direction changes which is an unmeasurable event
for the RSSI only sensors. The same argument holds for an eventual stopping of the
movement which was the case in the eg-room-change, og1-long-rooms, and the og1-
room-change scenario. It can be assumed, that a more elaborate transition model,
which would probably depend on additional sensors, leads to a better adaptation to
variable movement conditions.

A more detailed overview of the results on synthetic data is given in the appendix
A.3. There, the results for 5 different noise levels are listed with additional for-
ward/backward path separation. From comparing the forward and the backward
case, it can be seen, that they show a significant difference in some cases. A probable
explanation for this observation can be derived from the sensibility to the starting
conditions of the HMM and PF algorithm. If the starting point of the path lies
in an area with less AP coverage, the initial location hypotheses are distributed
widespread, which can, for example lead to early sample impoverishment in the PF
case. Another reason originates in the handling of the sequential nature of the track-
ing problem. The HMM/PF algorithms are able to retain accuracy in zones with
less AP coverage by depending on the history of the signals. At an uninformative
starting point such valuable history is not available.

It will be interesting to see if these results are also applicable to the case of real
world measurements which are inspected in the next section.

6.2. Localization 87

6.2.3 Real World Measurements

For the evaluation of the algorithms under reals world conditions, the evaluation
corpus, described in table 6.5, that is composed of the defined paths in table 6.4 are
used. The scene and the methods for obtaining the corpus were carefully described
in section 6.2.1.

The first experiment is conducted on the evaluation samples from the Iconia device.
160 samples were taken from the evaluation corpus. This was done by selecting
10 samples for each defined path. This relates to an evaluated distance of around
4000m. Furthermore, an optimized radio propagation model is used, trained only
on the measurements for the Iconia device.

Figure 6.3 Localization errors for the different algorithms on the real world mea-
surements from the Iconia device.

As can be seen in figure 6.3, the ranking of the errors for the different approaches are
comparable to the results of the synthetics evaluation (figure 6.2) although the online
variants of the HMM show higher errors than their PF counterparts. The LMSE
approach is outperformed by the PF, which is less accurate in the offline variant
of the error than the HMM. The reduction of the error rates of the PF and HMM
with respect to the LMSE approach are less satisfying than under the synthetic
conditions. Under synthetic conditions with a noise of 14dBm as in table 6.6, the
LMSE is outperformed by a factor nearly of 2 by the HMM and PF algorithm. Under
the real world conditions of this setting, the margin is reduced to around 20%. From
the details of the results for the different paths separated in table 6.7 can be seen,
that some of the defined paths are predicted quite inaccurately. This observation can
also be derived from the elevated standard deviation of 45cm and upwards, whereas
the compared synthetic result show an upper limit of 45cm (without the LMSE).

Especially the stairs-upward path shows an unsatisfying offline error of around 4m
for the HMM/PF algorithm. Whereas under synthetic condition with 14dBm noise,
it is only around 2.5m. This can probably be explained by the relatively low AP
coverage of around 4 APs as reported in table 6.4. Another outlier is given by the
og-eg path. Removing both paths from the corpus reduces the average error rates
over all algorithms by nearly 40cm.

Therefore, it can be concluded, that the absolute error rates reported in this evalu-
ation are very scene specific. As such, they cannot be used for a meaningful com-
parison with the systems found in literature.

88 6. Evaluation

Path HMM/off HMM HMM/avg LMSE PF/off PF PF/avg

eg-room-change 1.71 2.91 2.66 2.31 1.56 2.25 2.16
og1-classic 1.46 2.85 2.60 2.65 2.13 2.59 2.46
og1-eg 3.04 4.35 4.13 4.21 3.18 3.89 3.59
og1-eg-right 1.85 2.83 2.52 3.19 2.62 2.90 2.56
og1-long-rooms 2.02 3.54 3.40 3.86 2.82 3.08 2.93
og1-long-straight 2.94 4.00 3.84 3.32 2.62 3.28 3.32
og1-room-change 2.58 2.66 2.36 2.59 2.54 2.71 2.54

stairs-upward 3.17 3.49 3.22 5.82 3.50 4.35 3.58
stairs-upward-r 3.55 5.53 5.08 6.48 4.42 5.59 4.43

Mean in m 2.37 3.46 3.21 3.54 2.68 3.21 2.95
Stdev in m 0.68 0.87 0.87 1.17 0.69 0.85 0.66

Table 6.7 Detailed errors for the different paths from the evaluation corpus. The
aggregation of the results can be seen in figure 6.3. The stairs-upward-r path, that
is addionally shown in the forward/backward variant, is a drastic negative outlier,
probably due to complex nature of the stairway scene and the suboptimal placements
of APs.

Figure 6.4 Localization error over all algorithms for the Iconia device after apply-
ing the Device Adaptation technique. The error rates for the PF and the LMSE
algorithm drop by around 20cm.

6.2.3.1 Device Adaptation

The evaluation is continued by investigating the Device Adaptation method de-
scribed in the design chapter 4.2.3. This method assumes, that the reported RSSI
values from the device are distorted with respect to some unknown function. The
configuration of this function can be learned from the radio propagation models if
location annotated measurements are available for the individual model of the device
or for the more general device class.

Such a function was trained for the previously described and evaluated Iconia setup.
As the mentioned location annotated measurements, the training corpus for the radio
propagation model was used. The comparison of the results in figure 6.4 with the
previous results in figure 6.3 reveals that the procedure has a measurable effect on
the error rates. For the PF and the LMSE algorithm, the reduction is about 20cm.
The error rates of the HMM approach are reduced by about 40cm. Not surprisingly,

6.2. Localization 89

Path HMM/off HMM HMM/avg LMSE PF/off PF PF/avg

eg-room-change 1.61 2.50 2.27 2.24 1.41 2.04 1.99
og1-classic 1.44 2.30 2.11 2.31 1.86 2.25 2.10
og1-eg 2.23 3.87 3.70 3.77 3.03 3.62 3.33
og1-eg-right 2.06 2.73 2.48 3.05 2.88 3.02 2.74
og1-long-rooms 1.80 3.03 2.92 3.45 2.46 2.86 2.64
og1-long-straight 1.94 3.48 3.37 2.77 2.21 2.89 2.90
og1-room-change 1.87 2.13 1.81 2.35 2.13 2.37 2.14
stairs-upward 3.07 4.75 4.31 6.02 3.78 4.92 3.90

Mean in m 2.00 3.10 2.87 3.24 2.47 3.00 2.72
Stdev in m 0.48 0.94 0.91 1.18 0.73 0.90 0.66

Table 6.8 Localization error at the individual path level. The forward and backward
variants of the paths have been combined.

the relative differences between the defined path scenarios remain the same as can
be seen by comparing table 6.8 and the results without the adaptation step in table
6.7.

The observed positive result, the effect of the adaptation function can either be
interpreted as a better understanding of the true nature of the propagation model
or it can originate from a device specific property. In the former case, it can be
understood as an additional training step which follows the basis training described
in 6.1.2. But the latter case, the interpretation of the effect as an unknown device
specific property, was the initial assumption that had motivated the approach during
this thesis.

The main problem of this technique is the need for device and location annotated
RSSI measurements. This problem can be approached by investigating whether the
needed information can be obtained by using localization results as a ”trustworthy”
source. If this ”trustworthyness” is measurable, only results with a high accuracy
have to be fed back into the system which would probably lead to a better perfor-
mance.

6.2.3.2 Multiple Devices

In this part of the evaluation, the performance of the system over two devices is
investigated. In the first setting, a radio propagation model is used that was trained
with measurements of both devices. For each device, 160 paths from the evaluation
corpus are evaluted. The results for the HMM and the PF algorithm are shown in
figure 6.5.

The average error of the predictions for the Nexus device is comparable to the Iconia
device although the latter performs slightly better. The variability of the results for
the Nexus is visibly higher than that of the Iconia device. An evidence for this
result can be obtained by inspecting the radio propagation training corpus. As can
be seen in table 6.2, the standard deviation of the measurements for the Nexus is
significantly larger than the standard deviation of the Iconia device. A cause for

90 6. Evaluation

Figure 6.5 The two devices, the Iconia tablet and the Nexus smartphone, show
comparable error rates on a radio propagation model that is trained with measure-
ments from both.

this behaviour can be found by remembering the device classes of both models. The
Iconia is a tablet device with a ten inch display, whereas the Nexus is of the smaller
smartphone device class. Due to the size of its body, a possible interpretation is,
that the Iconia tablet is equipped with a larger antenna which leads to smother RSSI
readings.

Figure 6.6 Interestingly, the Nexus smartphone outperforms the Iconia tablet, with
respect to the localization accuracy, on a radio propagation model, that is only
trained on the latter.

In the last part of the evaluation it is investigated whether the assumption holds,
that the radio propagation model generalizes over the two used devices. Therefore,
an experiment with both devices is conducted on a radio propagation model that is
only trained with measurements of the Iconia device. The results of the employed
model for the Iconia were already shown in figure 6.3. Using the model also for the
Nexus device leads to the results of figure 6.6.

Comparing the results of both devices leads to the conclusion, that the Iconia trained
radio propagation model generalizes well for the Nexus specific localization problem.
The reported error rates for the Nexus are even lower for most algorithmic combi-
nations which has not been expected.

The next step of the evaluation is conducted by adding an additional Device Adap-
tation step as described in the previous section 6.2.3.1. Figure 6.7 reports the results
of this procedure.

6.2. Localization 91

Figure 6.7 The Device Adaptation shows no effect on the error rates of the Nexus.

Figure 6.8 Localization errors for radio propagation models trained on material
annotated 3D geometry of different complexities. From left to right, the geome-
try becomes more complex. It can be observed that using the most complex ge-
ometry of Full11 leads unexpectedly to worse results than using the less complex
Basic+Doors5.

Under the Iconia trained propagation model, the Device Adaptation for the Nexus
shows no significant enhancement. The results become even marginally worse. Un-
der the assumption, that the Device Adaptation is a form of final training for radio
propagation model, this result makes no sense. The measurements of the Nexus
device should have been a valuable information to adapt to the less ”familiar” prop-
agation model as it has only be trained on the Iconia device.

6.2.3.3 Granularity of the 3D geometry

In the following experiment, the impact of the accuracy of the 3D geometry on the
localization error is analysed. Six radio propagation models were trained on 3D
geometry that represents the UMIC environment in different levels of complexity.
The details of the six models are described in the former evaluation of these models
in section 6.1.2.1.

160 path samples originating from the Iconia device were selected from the evaluation
corpus, as including the samples from the Nexus can lead to undesired device specific
distortions in the outcome of the experiment. The samples are evaluated with all
three localization algorithms which leads to results that are listed in figure 6.8.

Unexpectedly, the single material variants Basic1 and Full1 perform worse than
the other variants. This underperformance was also visible in the reported RPE

92 6. Evaluation

of section 6.1.2.1. It can therefore be concluded, that modelling the environment
with one material leads to an insufficient propagation model with respect to the
localization problem. Even increasing the complexity of the scene geometry does
not leads to improvements. On the contrary, the Full1 propagation model performs
less accurate than the simpler Basic1 model.

The Basic2 propagation model performs very good with regard to its simple mesh
structure. Only the concrete and light walls are employed in the 3D geometry which
is a relatively easy to obtain information about a building. The model leads to
better error rates over all algorithms compared to the Full2 model. The Full2 can
be understood as an upgraded variant of the geometry from Basic2. They share the
scene objects composed of concrete material, but the Full2 combines all remaining
available triangles to the secondary material, whereas the Basic2 only uses the light
walls for that. Concluding from the error rates, this seems to be a bad approach.

It is an interesting result, that the Basic+Doors5 geometry outperforms the Full11
model on the HMM/PF algorithms quite significantly and leads to the overall best
results. The additional knowledge that is included in the most complex model Full11
seems not to be an exploitable information source for the raytracer under the setup
of this thesis.

6.3 Summary

From the overall results presented in this chapter, it can be summarized that the de-
signed framework is able to solve the localization problem with acceptable accuracy
for PHOTON driven radio propagation models. The proposed method of training
the free model parameters with genetic algorithms leads to material and AP spe-
cific coefficients that are usable to generate RSSI estimates that diverge only about
4dBm from the true reality represented by the training corpus. By further device
specific fine tuning with the presented Device Adaptation scheme, the divergence
can be reduced to 3.5dBm.

The analysis of the performance of the three different localization algorithms has
brought up the conclusion that the HMM approach outperforms the PF approach
over most scenarios. On synthetic data, the gap between the error rates of both
algorithms is more significant than under real world conditions. On an assumed
noise level of 14dBm, the offline error of the HMM approach is given by a promising
1.5m whereas the Particle Filter reaches only an offline accuracy of 2.6m. As was
expected from its algorithmic properties, the simple LMSE approach leads not to
competitive results on synthetic data, as it reports a localization error of around 5m.

The relations between the error rates of the algorithms shift quite significantly if
the evaluation is conducted on real world measurements. The HMM and the Par-
ticle Filter algorithm perform now very similar although the HMM shows a visible
advantage under offline conditions. The average error rates over all defined paths
are in the range of 2− 3m for most evaluated scenarios. It was observable, that the
error rates between paths of different complexity show a high variability. Especially
the stairway path can only be inferred with an accuracy of less than 4m. Removing
this path and another outlier shifts the offline/online error rates down to 1.5m/2.0m
over the remaining six easier scenarios.

6.3. Summary 93

The proposed Device Adaptation technique shows a promising increase of accuracy
for the Iconia device but only inconclusive results for the Nexus. The localization
experiments, that were conducted over both devices, lead to the conclusion that
the trained propagation models are able to generalize over multiple devices. The
system reports similar error rates if the propagation model is trained with either
only measurements from the Iconia or from the combined measurements of both
devices.

The final evaluation step, the investigation of how much granularity of the 3D geom-
etry is needed for the PHOTON generated propagation models that are subsequently
used for estimating the localization errors, lead to an interesting result. The best
performing radio propagation variant is driven by a 3D geometry only consisting of
concrete material, light walls and three different types of doors (iron, glass, normal).
The full detail model that contains additional elements like windows and furniture
is somewhat overspecified for the PHOTON → localization algorithm pipeline. But
this leads also to the more positive result, that sufficient detailed geometry can prob-
ably be generated automatically from rasterized 2D floor maps, since both types of
walls and the location of doors can be obtained from them in most cases.

94 6. Evaluation

7
Conclusion

The motivation of this thesis, the analysis of state-of-the-art localization algorithms
based on the prediction of Wi-Fi signal distributions has lead to the design of a
localization framework providing a combined controll of the raytracing system, the
localization system and the evaluation tools. The implemented system was em-
ployed to build a representative evaluation corpus for the localization problem and a
training corpus for the Wi-Fi prediction problem. The evaluation of the prediction
capabilities of the used PHOTON raytracer and the accuracy of the localization
algorithm over both data sets has brought up the following conclusions:

The achievable prediction accuracy of the radio propagation models is about 4dBm
compared to real world measurements by investigating only the basic components,
i.e. reflection and attenuation, of the PHOTON raytracer and using 3D scene ge-
ometry that distinguishes at least between two material types. This result has been
observed over 22 deployed APs on the investigated 8000m3 UMIC scene. Fur-
thermore, the propagation models were able to generalize over two device classes.
This means, the localization accuracy was not affected by using two different types
of client devices and without a specific device adaptation process although they
provided significant different RSSI measurements.

The primary goal of this work, the evaluation of different localization algorithms on
a complex scene and a large evaluation corpus under the constraints of the accuracy
induced by the raytracer model, has been reached. The evaluation of the HMM, PF
and LMSE localization algorithms has shown, that the PHOTON driven models can
be used for predictions with an accuracy in the range of 2−3m under the constraints
of the described environment settings.

The evaluation of the location accuracy has shown that the RSSI based system has
a large variance for the localization error. The primary source for the variability
in the observed accuracy is the constitution of the collected evaluation corpus. For
example, some paths have complex sections that lead along stairways with only a
sparse AP coverage. On the simpler pathway zones of the building, that are well
covered by about 6-8 APs, the system can reach localization error rates of between

96 7. Conclusion

1− 2m, whereas a localization in the difficult zones lead to significant errors of 4m
for the PF and of 6m for the HMM algorithm.

Du to the history-awareness of the PF and the HMM algorithms, the reported error
rates are distinguished in the online and the offline variant. The online error relates
to the localization result that is available under knowledge about the preceding
measurements, and the offline error relates to the prediction of the location under
the knowledge about all following measurements as well. This distinction has not
been made in the reported literature, although this is a relevant information as
both error variants differ by about 0.4m accuracy. Whereas the use-case of the
online variant represents a singular localization request under live conditions, the
offline variant is, for example, more valuable for analysing the movement patterns
for a group of people. The offline prediction is therefore useful to learn from the
environment, whereas the online variant is for use-cases like user navigation.

With respect to the real world evaluation results, the HMM algorithm outperforms
the PF based approach on the same available knowledge about the environment
under offline conditions, whereas under online conditions, the PF leads to slightly
better estimates. Furthermore, the PF approach is less computational demanding
than the HMM approach which, for example, makes it more portable to smaller and
less powerfull devices.

The presented localization framework has shown to be a viable platform to efficiently
evaluate the localization algorithms on the information derived from the raytracing
generated radio propagation models. The training procedure, devised for the un-
known raytracer material parameters in form of a genetic algorithm leads to well
behaving RSSI predictions that are usable as a foundation for the localization algo-
rithms.

7.1 Future Work

This section presents a brief collection of future research topics that were identified
during this thesis with respect to the two main topics radio propagation models and
Wi-Fi localization algorithms.

In order to achieve more accurate propagation models using raytracing generated
RSSI predictions the following open topics remain:

• The variance of the RSSI predictions, if modelled by Gaussian as in this thesis,
originates partly in the multipath effects of the radio propagation behaviour.
The PHOTON raytracing algorithms can be configured to report the signal
distribution for different recursion levels of its tracing algorithms. It would be
interesting if this can be interpretable as the described multipath effect and
therefore can be used as a further source of information for the localization
algorithms in terms of signal variance for the individual locations.

• Another feature of the raytracer are antenna patterns that are able provide
a more realistic signal distribution in contrast to the simple isotropic model
that was used for this thesis. The additional free parameters of the antenna

7.1. Future Work 97

model can also be trained with the proposed optimization procedure of this
framework.

• Furthermore, it would be interesting to analyse the effect of the AP placement
on the error rates. More APs lead to better performance of the system, but
is there a reachable optimum if the number of APs is limited? This optimal
placement of the APs can probably also be found automatically.

The next topics relate to the localization problem and can help to further increase
the accuracy of the presented algorithms:

• Lifting the constraints on the knowledge pool and fusing additional sensor
input into the RSSI measurement stream is probably the most promising way
to increase the location accuracy. And, as modern smartphones are more and
more equipped with sensors like gyroscopes, accelerometers and compasses
there exists a rich set of options. It should pose not much effort to adapt the
HMM and PF algorithms to these information sources.

• The presented HMM model can be extended to process more of the measure-
ment history by introducing higher order models. On current hardware, at
least second order models are computable, and will probable lead to a more
adaptable recognition systems. For example, this will enable the possibility to
model direction changes using the transition probabilities.

• The PF algorithm can be extended to handle the degradation of the particle
set under bad prediction conditions with a more elaborate technique than the
currently implemented random resampling. A backtracking based proposal
found in the related literature to the topic seems to be suited for this problem.

98 7. Conclusion

Bibliography

[1] Deterministic Propagation Model for the Planning of Hybrid Urban and Indoor
Scenarios (2005), vol. 1. http://dx.doi.org/10.1109/PIMRC.2005.1651518.

[2] Bahl, P., and Padmanabhan, V. N. Radar: An in-building RF-based user
location and tracking system. In INFOCOM (2) (2000), pp. 775–784.

[3] Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D.,
and Smith, K. Cython: The best of both worlds. Computing in Science
Engineering 13, 2 (2011), 31 –39.

[4] Bishop, C. M. Pattern recognition and machine learning, 1st ed. 2006. corr.
2nd printing ed. Springer, Oct. 2006.

[5] Chao, C.-H., Chu, C.-Y., and Wu, A.-Y. Location-constrained particle
filter human positioning and tracking system. In SiPS’08 (2008), pp. 73–76.

[6] Chen, Y. C., Chiang, J. R., Chu, H. H., Huang, P., and Tsui, A. W.
Sensor-assisted wi-fi indoor location system for adapting to environmental dy-
namics. In Proceedings of the 8th ACM international symposium on Model-
ing, analysis and simulation of wireless and mobile systems (New York, NY,
USA, 2005), MSWiM ’05, ACM, pp. 118–125. http://dx.doi.org/10.1145/

1089444.1089466.

[7] Doucet, A., and Johansen, A. M. A tutorial on particle filtering and
smoothing: fifteen years later. The Oxford Handbook of Nonlinear Filtering
(Dec. 2009), 4–6.

[8] El-Kafrawy, K., Youssef, M., El-Keyi, A., and Naguib, A. Propaga-
tion modeling for accurate indoor WLAN RSS-based localization. In Vehicular
Technology Conference Fall (VTC 2010-Fall), 2010 IEEE 72nd (2010), IEEE,
pp. 1–5. http://dx.doi.org/10.1109/VETECF.2010.5594108.

[9] Eleryan, A., Elsabagh, M., and Youssef, M. Aroma: Automatic gen-
eration of radio maps for localization systems. CoRR.

[10] Figueiras, J., and Frattasi, S. Mobile Positioning and Tracking. John
Wiley & Sons, 2010.

[11] Hassan-Ali, M., and Pahlavan, K. A new statistical model for site-specific
indoor radio propagation prediction based on geometric optics and geometric
probability. Wireless Communications, IEEE Transactions on 1, 1 (2002), 112–
124.

http://dx.doi.org/10.1109/PIMRC.2005.1651518
http://dx.doi.org/10.1145/1089444.1089466
http://dx.doi.org/10.1145/1089444.1089466
http://dx.doi.org/10.1109/VETECF.2010.5594108

100 Bibliography

[12] Hatami, A., and Pahlavan, K. Comparative statistical analysis of indoor
positioning using empirical data and indoor radio channel models. In Consumer
Communications and Networking Conference, 2006. CCNC 2006. 3rd IEEE
(Jan. 2006), vol. 2, IEEE, pp. 1018–1022. http://dx.doi.org/10.1109/CCNC.
2006.1593192.

[13] Ji, Y., Biaz, S., Pandey, S., and Agrawal, P. Ariadne: a dynamic
indoor signal map construction and localization system. In Proceedings of the
4th international conference on Mobile systems, applications and services (New
York, NY, USA, 2006), MobiSys ’06, ACM, pp. 151–164. http://doi.acm.

org/10.1145/1134680.1134697.

[14] Julier, S. J., and Uhlmann, J. K. Unscented filtering and nonlinear
estimation. Proceedings of the IEEE 92, 3 (Mar. 2004), 401–422. http:

//dx.doi.org/10.1109/JPROC.2003.823141.

[15] Klepal, M. Novel Approach to Indoor Electromagnetic Wave Propagation
Modelling. PhD thesis, Czech Technical University, 2003.

[16] Nicoli, M. B. Hmm-based tracking of moving terminals in dense multipath
indoorenvironments. Eusipco 2005 (2010).

[17] Pandey, S., Kim, B., Anjum, F., and Agrawal, F. Client assisted location
data acquisition scheme for secure enterprise wireless networks. vol. 2, pp. 1174–
1179 Vol. 2.

[18] Prasithsangaree, P., Krishnamurthy, P., and Chrysanthis, P. On
indoor position location with wireless LANs. vol. 2, pp. 720–724 vol.2.

[19] Pugh, W. Skip lists: a probabilistic alternative to balanced trees. Commun.
ACM 33, 6 (June 1990), 668–676. http://dx.doi.org/10.1145/78973.78977.

[20] Richalot, E., Bonilla, M., Wong, M.-F., Fouad-Hanna, V., Bau-
drand, H., and Wiart, J. Electromagnetic propagation into reinforced-
concrete walls. Microwave Theory and Techniques, IEEE Transactions on 48,
3 (Mar. 2000), 357–366. http://dx.doi.org/10.1109/22.826834.

[21] Roweis, S., and Ghahramani, Z. A unifying review of linear gaussian
models, 1999.

[22] Schmitz, A., Karolski, T., and Kobbelt, L. Using spherical harmonics
for modeling antenna patterns. IEEE Radio and Wireless Symposium.

[23] Schmitz, A., and Kobbelt, L. Efficient and accurate urban outdoor radio
wave propagation. Electromagnetics in Advanced Applications (ICEAA) (Sept.
2011), 323–326.

[24] Schmitz, A., and Wenig, M. The effect of the radio wave propagation
model in mobile ad hoc networks. In MSWiM ’06: Proceedings of the 9th ACM
international symposium on Modeling analysis and simulation of wireless and
mobile systems (New York, NY, USA, 2006), ACM Press, pp. 61–67. http:

//dx.doi.org/10.1145/1164717.1164730.

http://dx.doi.org/10.1109/CCNC.2006.1593192
http://dx.doi.org/10.1109/CCNC.2006.1593192
http://doi.acm.org/10.1145/1134680.1134697
http://doi.acm.org/10.1145/1134680.1134697
http://dx.doi.org/10.1109/JPROC.2003.823141
http://dx.doi.org/10.1109/JPROC.2003.823141
http://dx.doi.org/10.1145/78973.78977
http://dx.doi.org/10.1109/22.826834
http://dx.doi.org/10.1145/1164717.1164730
http://dx.doi.org/10.1145/1164717.1164730

Bibliography 101

[25] Seitz, J. V. A hidden markov model for pedestrian navigation. Positioning
Navigation and Communication, 7th Workshop (Mar. 2010), 120–127.

[26] Valenzuela, R. A ray tracing approach to predicting indoor wireless trans-
mission. In Vehicular Technology Conference, 1993 IEEE 43rd (May 1993),
IEEE, pp. 214–218. http://dx.doi.org/10.1109/VETEC.1993.507047.

[27] Wallbaum, M., and Wasch, T. Markov localization of wireless local area
network clients. In WONS (2004), vol. 2928 of Lecture Notes in Computer
Science, Springer, pp. 1–15.

[28] Wang, H., Szabo, A., Bamberger, J., Brunn, D., and Hanebeck,
U. D. Performance comparison of nonlinear filters for indoor WLAN posi-
tioning. In Information Fusion, 2008 11th International Conference on (June
2008), IEEE, pp. 1–7.

[29] Widyawan, Klepal, M., and Beauregard, S. A backtracking particle
filter for fusing building plans with PDR displacement estimates. 207–212.
http://dx.doi.org/10.1109/WPNC.2008.4510376.

[30] Wilson, R. Propagation losses through common building materials 2.4 GHz
vs 5 GHz., Aug. 2002.

[31] Woodman, O., and Harle, R. Pedestrian localisation for indoor envi-
ronments. In Proceedings of the 10th international conference on Ubiquitous
computing (New York, NY, USA, 2008), UbiComp ’08, ACM, pp. 114–123.
http://dx.doi.org/10.1145/1409635.1409651.

[32] Youssef, M., Mah, M., and Agrawala, A. Challenges: device-free passive
localization for wireless environments. In MobiCom ’07: Proceedings of the
13th annual ACM international conference on Mobile computing and networking
(New York, NY, USA, 2007), ACM, pp. 222–229. http://dx.doi.org/10.

1145/1287853.1287880.

http://dx.doi.org/10.1109/VETEC.1993.507047
http://dx.doi.org/10.1109/WPNC.2008.4510376
http://dx.doi.org/10.1145/1409635.1409651
http://dx.doi.org/10.1145/1287853.1287880
http://dx.doi.org/10.1145/1287853.1287880

102 Bibliography

A
Appendix

A.1 List of Abbreviations

AOA Angle Of Arrival
AP Access Point
API Application Programming Interface
BRDF Bidirectional Reflectance Distribution Function
CPU Central Processing Unit
GPS Global Positioning System
GPU Graphics Processing Unit
GSM Global System for Mobile Communications
HMM Hidden Markov Model
HTTP Hypertext Transfer Protocol
IEEE Institute of Electrical and Electronics Engineers
LMSE Least Mean Squared Error
LOS Line Of Sight
LDS Linear Dynamic System
LE Localization Error
NLOS None Line Of Sight
OpenGL Open Graphics Library
OpenMP Open Multi-Processing
PF Particle Filter
PDF Probability Density Function
RPE Radio Propagation Error
RSSI Received Signal Strength Indication
SSID Service Set IDentification
SSM Signal Strength Map
TDOA Time Difference Of Arrival
TOA Time Of Arrival
UTD Uniform Theory of Diffraction
WAF Wall Attenuation Factor

104 A. Appendix

A.2 Localization Paths

Figure A.1 The path eg-room-change starts in a room in the lower floor and visits
2 other rooms on the same level. In the middle room (greenish) the localization
target holds its position for around 5 seconds. The path has a length of 40m and is
covered by an average of 9 APs.

A.2. Localization Paths 105

Figure A.2 The path og1-classic start in a room on the right side of the first
level. It leaves the room and visits another room by circling around the core room
(Hardware Pool) of the level. The path has an length of 36m and is covered by 12
APs.

Figure A.3 The path og1-eg starts deep in the left side of the ground level and
leads by the stairways to the right side of the first level of the building. The path
has distance of 60m and is covered by an average of 7 APs over all positions.

106 A. Appendix

Figure A.4 The path og1-eg-right starts in the same room as og1-classic. It leads
from the first level to the right side of the ground level by passig the stairways.
The total covered distance is 70m and an average of 10 APs are seen during the
transition.

Figure A.5 the path og1-long-rooms starts at the right side of the first level and
leads deep into the left side of the same level. There, a room is covered and the path
leads back again into some sort of kitchen zone. In that zone, the mobile device rests
for around 5 seconds. The path has a length of 81m and is covered by an average of
7 APs over all positions.

A.2. Localization Paths 107

Figure A.6 The path og1-long-straight forms a straight line from one side to the
other side of the building and remains on one level. The path is 42m long and is
covered by an average of 8 APs.

Figure A.7 The path og1-room-changes represents a short room transtions. At the
start and the end of the path, the device rests around 5 seconds and does not move.
The scene is covered by 10 APs and the path has a length of 14m.

108 A. Appendix

Figure A.8 The path og1-stairs-upward starts at the ground level and uses the
stairways to relocate to the second level. It has a length of around 50m and is
covered by an average of 4 APs over all positions.

A.3 Synthetic Localization Error Tables

Online and Offline LEs in m for Noise: σ = 0dBm (forward+backward)
Path HMM/off HMM HMM/avg LMSE PF/off PF PF/avg

eg-room-change 1.78 2.30 2.04 4.88 2.43 2.93 2.40
eg-room-change-r 1.75 2.38 2.13 5.07 2.60 3.07 2.62
og1-classic 1.11 1.79 1.58 3.65 2.26 2.76 2.36
og1-classic-r 1.07 1.52 1.25 3.54 1.95 2.16 1.73
og1-eg 1.49 2.31 2.08 4.98 3.29 3.72 3.36
og1-eg-r 1.70 2.56 2.38 5.03 2.79 3.37 3.09
og1-eg-right 1.44 2.17 1.97 5.34 3.08 3.54 3.25
og1-eg-right-r 1.59 2.36 2.11 5.43 2.98 3.39 3.05
og1-long-rooms 1.86 2.50 2.31 6.19 3.12 3.68 3.25
og1-long-rooms-r 1.80 2.56 2.36 5.91 3.01 3.66 3.32
og1-long-straight 1.29 2.06 1.89 4.29 2.13 2.60 2.30
og1-long-straight-r 1.47 2.08 1.85 4.10 2.16 2.62 2.26
og1-room-change 1.60 2.06 1.82 3.63 2.51 2.73 2.35
og1-room-change-r 1.67 2.04 1.86 3.58 2.39 2.75 2.33
stairs-upward 1.17 1.80 1.58 5.92 2.62 2.96 2.56
stairs-upward-r 1.22 2.81 2.63 6.03 2.76 3.21 2.95

Mean in m 1.50 2.21 1.99 4.85 2.63 3.07 2.70
Stdev in m 0.25 0.32 0.34 0.91 0.39 0.44 0.47

A.3. Synthetic Localization Error Tables 109

Online and Offline LEs in m for Noise: σ = 4dBm (forward+backward)
Path HMM/off HMM HMM/avg LMSE PF/off PF PF/avg

eg-room-change 1.78 2.30 2.04 4.88 2.43 2.93 2.40
eg-room-change-r 1.75 2.38 2.13 5.07 2.60 3.07 2.62
og1-classic 1.11 1.79 1.58 3.65 2.26 2.76 2.36
og1-classic-r 1.07 1.52 1.25 3.54 1.95 2.16 1.73
og1-eg 1.49 2.31 2.08 4.98 3.29 3.72 3.36
og1-eg-r 1.70 2.56 2.38 5.03 2.79 3.37 3.09
og1-eg-right 1.44 2.17 1.97 5.34 3.08 3.54 3.25
og1-eg-right-r 1.59 2.36 2.11 5.43 2.98 3.39 3.05
og1-long-rooms 1.86 2.50 2.31 6.19 3.12 3.68 3.25
og1-long-rooms-r 1.80 2.56 2.36 5.91 3.01 3.66 3.32
og1-long-straight 1.29 2.06 1.89 4.29 2.13 2.60 2.30
og1-long-straight-r 1.47 2.08 1.85 4.10 2.16 2.62 2.26
og1-room-change 1.60 2.06 1.82 3.63 2.51 2.73 2.35
og1-room-change-r 1.67 2.04 1.86 3.58 2.39 2.75 2.33
stairs-upward 1.17 1.80 1.58 5.92 2.62 2.96 2.56
stairs-upward-r 1.22 2.81 2.63 6.03 2.76 3.21 2.95

Mean in m 1.50 2.21 1.99 4.85 2.63 3.07 2.70
Stdev in m 0.25 0.32 0.34 0.91 0.39 0.44 0.47

Online and Offline LEs in m for Noise: σ = 8dBm (forward+backward)
Path HMM/off HMM HMM/avg LMSE PF/off PF PF/avg

eg-room-change 1.78 2.30 2.04 4.88 2.43 2.93 2.40
eg-room-change-r 1.75 2.38 2.13 5.07 2.60 3.07 2.62
og1-classic 1.11 1.79 1.58 3.65 2.26 2.76 2.36
og1-classic-r 1.07 1.52 1.25 3.54 1.95 2.16 1.73
og1-eg 1.49 2.31 2.08 4.98 3.29 3.72 3.36
og1-eg-r 1.70 2.56 2.38 5.03 2.79 3.37 3.09
og1-eg-right 1.44 2.17 1.97 5.34 3.08 3.54 3.25
og1-eg-right-r 1.59 2.36 2.11 5.43 2.98 3.39 3.05
og1-long-rooms 1.86 2.50 2.31 6.19 3.12 3.68 3.25
og1-long-rooms-r 1.80 2.56 2.36 5.91 3.01 3.66 3.32
og1-long-straight 1.29 2.06 1.89 4.29 2.13 2.60 2.30
og1-long-straight-r 1.47 2.08 1.85 4.10 2.16 2.62 2.26
og1-room-change 1.60 2.06 1.82 3.63 2.51 2.73 2.35
og1-room-change-r 1.67 2.04 1.86 3.58 2.39 2.75 2.33
stairs-upward 1.17 1.80 1.58 5.92 2.62 2.96 2.56
stairs-upward-r 1.22 2.81 2.63 6.03 2.76 3.21 2.95

Mean in m 1.50 2.21 1.99 4.85 2.63 3.07 2.70
Stdev in m 0.25 0.32 0.34 0.91 0.39 0.44 0.47

110 A. Appendix

Online and Offline LEs in m for Noise: σ = 12dBm (forward+backward)
Path HMM/off HMM HMM/avg LMSE PF/off PF PF/avg

eg-room-change 1.78 2.30 2.04 4.88 2.43 2.93 2.40
eg-room-change-r 1.75 2.38 2.13 5.07 2.60 3.07 2.62
og1-classic 1.11 1.79 1.58 3.65 2.26 2.76 2.36
og1-classic-r 1.07 1.52 1.25 3.54 1.95 2.16 1.73
og1-eg 1.49 2.31 2.08 4.98 3.29 3.72 3.36
og1-eg-r 1.70 2.56 2.38 5.03 2.79 3.37 3.09
og1-eg-right 1.44 2.17 1.97 5.34 3.08 3.54 3.25
og1-eg-right-r 1.59 2.36 2.11 5.43 2.98 3.39 3.05
og1-long-rooms 1.86 2.50 2.31 6.19 3.12 3.68 3.25
og1-long-rooms-r 1.80 2.56 2.36 5.91 3.01 3.66 3.32
og1-long-straight 1.29 2.06 1.89 4.29 2.13 2.60 2.30
og1-long-straight-r 1.47 2.08 1.85 4.10 2.16 2.62 2.26
og1-room-change 1.60 2.06 1.82 3.63 2.51 2.73 2.35
og1-room-change-r 1.67 2.04 1.86 3.58 2.39 2.75 2.33
stairs-upward 1.17 1.80 1.58 5.92 2.62 2.96 2.56
stairs-upward-r 1.22 2.81 2.63 6.03 2.76 3.21 2.95

Mean in m 1.50 2.21 1.99 4.85 2.63 3.07 2.70
Stdev in m 0.25 0.32 0.34 0.91 0.39 0.44 0.47

Online and Offline LEs in m for Noise: σ = 16dBm (forward+backward)
Path HMM/off HMM HMM/avg LMSE PF/off PF PF/avg

eg-room-change 1.78 2.30 2.04 4.88 2.43 2.93 2.40
eg-room-change-r 1.75 2.38 2.13 5.07 2.60 3.07 2.62
og1-classic 1.11 1.79 1.58 3.65 2.26 2.76 2.36
og1-classic-r 1.07 1.52 1.25 3.54 1.95 2.16 1.73
og1-eg 1.49 2.31 2.08 4.98 3.29 3.72 3.36
og1-eg-r 1.70 2.56 2.38 5.03 2.79 3.37 3.09
og1-eg-right 1.44 2.17 1.97 5.34 3.08 3.54 3.25
og1-eg-right-r 1.59 2.36 2.11 5.43 2.98 3.39 3.05
og1-long-rooms 1.86 2.50 2.31 6.19 3.12 3.68 3.25
og1-long-rooms-r 1.80 2.56 2.36 5.91 3.01 3.66 3.32
og1-long-straight 1.29 2.06 1.89 4.29 2.13 2.60 2.30
og1-long-straight-r 1.47 2.08 1.85 4.10 2.16 2.62 2.26
og1-room-change 1.60 2.06 1.82 3.63 2.51 2.73 2.35
og1-room-change-r 1.67 2.04 1.86 3.58 2.39 2.75 2.33
stairs-upward 1.17 1.80 1.58 5.92 2.62 2.96 2.56
stairs-upward-r 1.22 2.81 2.63 6.03 2.76 3.21 2.95

Mean in m 1.50 2.21 1.99 4.85 2.63 3.07 2.70
Stdev in m 0.25 0.32 0.34 0.91 0.39 0.44 0.47

A.4. 2D Localization Result 111

A.4 2D Localization Result

Figure A.9 Visualization of the HMM driven localization results for the path og1-
classic-r. The first result is only available at the end of the path, whereas an online
user would be more interested in last two results.

A.5 Optimization Process

112 A. Appendix

Figure A.10 Convergence of material parameters during an optimization run with
genetic algorithms. The optimization target can be seen in the upper left corner, it
is the average delta between the simulation results and the real world measurements.

	Contents
	1 Introduction
	1.1 Radio Propagation
	1.2 Localization Algorithms
	1.3 Framework and Implementation
	1.4 Evaluation
	1.5 Outline

	2 Background
	2.1 Radio Propagation Model
	2.1.1 PHOTON Raytracer
	2.1.2 Optimization with Genetic Algorithms
	2.1.3 Error

	2.2 Positioning
	2.2.1 Techniques

	2.3 Tracking
	2.3.1 Mobility Models
	2.3.2 Error

	2.4 Bayesian Pattern Recognition
	2.5 Hidden Markov Models
	2.5.1 Decision Rule
	2.5.2 Viterbi Algorithm
	2.5.3 Higher Order Models
	2.5.4 Logspace
	2.5.5 Pruning
	2.5.6 Training

	2.6 Continuous Models
	2.6.1 Linear Dynamic System
	2.6.2 Particle Filter

	2.7 Least Mean Squared Error
	2.8 Summary

	3 Related Work
	3.1 Radio Propagation
	3.1.1 2D-Raytracer Models
	3.1.2 3D-Raytracer Models

	3.2 Positioning and Tracking
	3.2.1 Hidden Markov Models
	3.2.2 Particle Filters
	3.2.3 Nearest Neighboor based Approaches

	3.3 Summary

	4 Design
	4.1 General Overview
	4.2 Radio Propagation
	4.2.1 Model
	4.2.2 Parameter Estimation
	4.2.2.1 Initialization
	4.2.2.2 Optimization

	4.2.3 Device Specific Adaptation

	4.3 Positioning and Tracking
	4.3.1 Hidden Markov Model
	4.3.1.1 Parameter Estimation
	4.3.1.2 Emission Probabilities
	4.3.1.3 Transition Probabilities
	4.3.1.4 Pruning
	4.3.1.5 Result Sequence

	4.3.2 Particle Filter
	4.3.2.1 Emission Probabilities
	4.3.2.2 Transition Probabilities
	4.3.2.3 Sample Impoverishment
	4.3.2.4 Result Sequence

	4.4 Devices
	4.5 Fat Client
	4.6 Evaluation
	4.7 Summary

	5 Implementation
	5.1 Third Party Libraries
	5.2 Modules
	5.2.1 Server
	5.2.2 Localization Algorithms
	5.2.3 Fat Client

	5.3 Summary

	6 Evaluation
	6.1 Radio Propagation Model
	6.1.1 Scene and Setup
	6.1.1.1 3D-Model and Materials
	6.1.1.2 Accesspoints
	6.1.1.3 Devices
	6.1.1.4 Training Corpus

	6.1.2 Training of free Parameters
	6.1.2.1 Granularity of the 3D geometry
	6.1.2.2 Multiple Devices

	6.2 Localization
	6.2.1 Scene and Setup
	6.2.2 Synthetic Measurements
	6.2.3 Real World Measurements
	6.2.3.1 Device Adaptation
	6.2.3.2 Multiple Devices
	6.2.3.3 Granularity of the 3D geometry

	6.3 Summary

	7 Conclusion
	7.1 Future Work

	Bibliography
	A Appendix
	A.1 List of Abbreviations
	A.2 Localization Paths
	A.3 Synthetic Localization Error Tables
	A.4 2D Localization Result
	A.5 Optimization Process

